Sửa đề: \(1-3+3^2-3^3+...+\left(-3\right)^x=\dfrac{1-9^{1006}}{4}\)
Đặt \(A=\left(-3\right)^0+\left(-3\right)^1+\left(-3\right)^2+\left(-3\right)^3+...+\left(-3\right)^x\)
\(\Leftrightarrow-3A=\left(-3\right)^1+\left(-3\right)^2+...+\left(-3\right)^{x+1}\)
\(\Leftrightarrow-4A=\left(-3\right)^{x+1}-1\)
hay \(A=\dfrac{-\left(-3\right)^{x+1}+1}{4}\)
Theo đề, ta có: \(-\left(-3\right)^{x+1}+1=1-9^{1006}\)
=>x+1=2012
hay x=2011