a) Ta có: \(\left|4-5x\right|=24\)
\(\Leftrightarrow\left[{}\begin{matrix}-5x+4=24\\-5x+4=-24\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-5x=20\\-5x=-28\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=\dfrac{28}{5}\end{matrix}\right.\)
Vậy: \(x\in\left\{-4;\dfrac{28}{5}\right\}\)
b) Ta có: \(\left(8+x\right)\left(6-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+8=0\\6-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-8\\x=6\end{matrix}\right.\)
Vậy: \(x\in\left\{-8;6\right\}\)
a) \(\left|4-5x\right|=24\)
\(\Leftrightarrow\left[{}\begin{matrix}4-5x=24\\4-5x=-24\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=\dfrac{28}{5}\end{matrix}\right.\)
b) \(\left(8+x\right)\left(6-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}8+x=0\\6-x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-8\\x=6\end{matrix}\right.\)
a.|4-5.x|=24
TH1: 4-5.x=24
⇔5x=-20
⇔x=-4
TH1: 4-5.x=-24
⇔5x=28
⇔x=28/5
b.(8+x).(6-x)=0
\(\left\{{}\begin{matrix}8+x=0\\6-x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-8\\x=6\end{matrix}\right.\)