Cho A = x^2 × y^2 , B = xy^2x , C = xyz^2 và x+y+z=1
Rút gọn A + B + C
Tìm các số x,y,z thỏa mãn các điều kiện sau :x^2yz=−2;xy^2z=2;xyz^2=−4
Tìm các số x,y,z thỏa mãn các điều kiện sau : x^2yz=−2; xy^2z=2; xyz^2=−4
BT:thu gon don thuc , tim he so va bac cua don thuc
a)-(\(\frac{-1}{2}\)\(xy^2z\))\(^2\) (\(4x^2yz\)\(^3\))
b)\(\left(\frac{-1}{3}x^2yz^3\right)^2.\left(-\frac{6}{7}xyz^2\right)\)
c)\(-3x^2.y^4.\left(\frac{-1}{3}y^4z^5x\right).\left(\frac{-1}{2}zyx^3\right)\)
d)\(\left(-\frac{2}{5}x^2y\right)^3.\left(-\frac{1}{3}xy^2\right)\)
e)\(\frac{3}{4}xy^3\left(-\frac{2}{3}x^2y^4\right)^2\)
g)\(\left(-\frac{3}{5}x^2y^3\right)^2\left(-\frac{1}{3}x^3y^2\right)^3\)
mn co gang giup mik vs mik dang can gap
Rút gọn:
1. (\(\frac{1}{3}\)xy)2 x3 + \(\frac{3}{2}\)(2x)3 (\(-\frac{7}{4}\)x2y2)\(-\frac{2}{3}\)x5y2
2. \(-\frac{2}{5}\)x2y (-y6) + \(\frac{3}{2}\)xy (\(-\frac{1}{15}\)xy6) + (-2xy)2y5
3. \(\frac{3}{7}\)xy2z + \(\frac{1}{2}\)x3y2 + \(\frac{1}{3}\)x3y2 \(-\frac{3}{7}\)xy2z
4. \(\frac{2}{3}\)xy2 \(-\frac{5}{2}\)yz + \(\frac{1}{2}\)xy2 \(-\frac{2}{3}\)yz
5. \(\frac{3}{2}\)xy2z5 \(-\frac{5}{4}\)xyz2 + \(\frac{4}{3}\)xy2z5 + \(\frac{1}{2}\)xyz2
Cho A= x2y2 ; B=xy2z ; C=xyz2 và x+y+z = 1. Chứng tỏ rằng A+B+C = xyz
????????????????????????????????????
Rút gọn:
1. \(\frac{1}{5}\)x2y7. (-10x3yz2).(\(\frac{1}{4}\)x5y2z)
2. -3x4yz. (\(-\frac{1}{6}\)x3yz2).(\(-\frac{5}{2}\)x4y3z)
3. \(-\frac{1}{4}\)x3y4z5. (\(\frac{8}{9}\)x2yz).(\(-\frac{3}{5}\)xyz3)
4. \(\frac{5}{3}\)x4y3z5. (\(-\frac{3}{10}\)xy2z).(\(-\frac{2}{7}\)x5yz)
5. \(-\frac{1}{2}\)x4y7. (\(-\frac{2}{5}\)xyz).(\(\frac{10}{7}\)xz3).(-14y2z3)
Giải chi tiết, cấm ghi đáp án không
Tìm bậc của đơn thức sau:
a) \(2^3\cdot xy^2z^3t\)
b) \(4x^2yz\cdot3\cdot x^2\)
Rút gọn:
1. (-2x4y3z7)2.(\(\frac{1}{4}\)xy5).(-3x2yz)3.(\(-\frac{1}{27}\)x3yz2)
2. ( \(-\frac{1}{3}\)xy2z).(\(\frac{4}{5}\)x5y6z).(\(-\frac{27}{10}\)x2yz4)
3. (-7x5yz2)2. (\(-\frac{1}{4}\)x3yz7).(\(\frac{8}{21}\)x5z4)
4. (\(-\frac{1}{4}\)x2y3z4)3.(-2xyz2)2.(\(-\frac{5}{3}\)x4yz)
5. (\(\frac{1}{4}\)x4y2z)2.(-8xyz2).(\(-\frac{1}{2}\)x4yz)