câu này cần có điều kiện \(\left(x;y\in Z\right)\) mới tìm được
để mk lm với điều kiện \(\left(x;y\in Z\right)\) nha
ta có : \(\left(3x-\dfrac{1}{5}\right)^{200}+\left(\dfrac{2y}{5}+\dfrac{4}{7}\right)^{100}=100\)
\(\Leftrightarrow\left(3x-\dfrac{1}{5}\right)^{200}=100-\left(\dfrac{2y}{5}+\dfrac{4}{7}\right)^{100}\ge0\)
\(\Rightarrow\left(\dfrac{2y}{5}+\dfrac{4}{7}\right)^{100}\le100\) \(\Leftrightarrow\dfrac{-2\left(\sqrt[100]{100}-\dfrac{4}{7}\right)}{5}\le y\le\dfrac{2\left(\sqrt[100]{100}-\dfrac{4}{7}\right)}{5}\)
\(\Rightarrow y=0\left(y\in Z\right)\)
với \(y=0\) thì ta có : \(\left(3x-\dfrac{1}{5}\right)^{200}+\left(\dfrac{4}{7}\right)^{100}=100\)
\(\Rightarrow\left(3x-\dfrac{1}{5}\right)^{200}=100-\left(\dfrac{4}{7}\right)^{100}\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-\dfrac{1}{5}=\sqrt[200]{100-\left(\dfrac{4}{7}\right)^{100}}\\3x-\dfrac{1}{5}=-\sqrt[200]{100-\left(\dfrac{4}{7}\right)^{100}}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt[200]{100-\left(\dfrac{4}{7}\right)^{100}}+\dfrac{1}{5}}{3}\\x=\dfrac{-\sqrt[200]{100-\left(\dfrac{4}{7}\right)^{100}}+\dfrac{1}{5}}{3}\end{matrix}\right.\)
vì 2 giá trị này \(\notin Z\) \(\Rightarrow x\in\varnothing\)
vậy phương trình vô nghiệm .
ta có : ⇔(3x−15)200=100−(2y5+47)100≥0⇔(3x−15)200=100−(2y5+47)100≥0
⇔−2(100√100−47)5≤y≤2(100√100−47)5⇔−2(100100−47)5≤y≤2(100100−47)5
⇒y=0(y∈Z)⇒y=0(y∈Z)
với y=0y=0 thì ta có : ⇒(3x−15)200=100−(47)100⇒(3x−15)200=100−(47)100
⇔⎡⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢⎣x=200√100−(47)100+153x=−200√100−(47)100+153⇔[x=100−(47)100200+153x=−100−(47)100200+153
vì 2 giá trị này ∉Z∉Z ⇒x∈∅