a, \(\left(x-5\right)\left(x+2\right)=0\)
\(\Rightarrow\left[\begin{matrix}x-5=0\\x+2=0\end{matrix}\right.\)\(\Leftrightarrow\left[\begin{matrix}x=0+5=5\\x=0-2=-2\end{matrix}\right.\)
Vậy x = 5 hoặc x = -2
b, \(26\left(2x+4\right)\left(x-1\right)=0\Leftrightarrow\left(2x+4\right)\left(x-1\right)=0\)
\(\Rightarrow\left[\begin{matrix}2x+4=0\\x-1=0\end{matrix}\right.\)\(\Leftrightarrow\left[\begin{matrix}2x=-4\\x=1\end{matrix}\right.\)\(\Leftrightarrow\left[\begin{matrix}x=-2\\x=1\end{matrix}\right.\)
Vậy x = -2 hoặc x = 1
c, \(\left(x^2-9\right)\left(x^2-25\right)< 0\)
\(\Rightarrow\) x2 - 9 và x2 - 25 trái dấu
Mà : \(x^2-9>x^2-25\)
\(\Rightarrow\left\{\begin{matrix}x^2-9>0\\x^2-25< 0\end{matrix}\right.\)\(\Rightarrow\left\{\begin{matrix}x^2>9\\x^2< 25\end{matrix}\right.\)\(\Rightarrow9< x^2< 25\)
Mà : \(x\in Z\) => x2 là số chính phương
\(x^2=16\Rightarrow x^2=\left(\pm4\right)^2\Rightarrow x=\pm4\)
Vậy \(x=\pm4\)
\(\left(x-5\right)\left(x+2\right)=0\)
=> x - 5 = 0 và x + 2 = 0
=> x = -5 và x = -2
a) \(\left(x-5\right)\left(x+2\right)=0\)
\(\Rightarrow\left[\begin{matrix}x-5=0\\x+2=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
b) \(26.\left(2x+4\right)\left(x-1\right)=0\)
\(\left(2x+4\right)\left(x-1\right)=0:26\)
\(\left(2x+4\right)\left(x-1\right)=0\)
\(\Rightarrow\left[\begin{matrix}2x+4=0\\x-1=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=-2\\x=1\end{matrix}\right.\)
A) (x-5).(x+2) =0
TH1: x-5=0 TH2: x+2=0
x=5 x=-2
\(\Rightarrow X\in\left\{-2;5\right\}\)
B) 26.(2x+4).(x-1)=0
(2x+4). (x-1) = 0:26 =0
TH1:2x+4=0 TH2: x-1=0
2x = -4 X=1
x=-2