\(\left(x+1\right)^3-\left(x-1\right)^2-6\left(x-1\right)^2=-10\)
\(\Rightarrow4\left(3x-1\right)=-2,5\)
\(\Rightarrow12x-4=-10\)
\(\Rightarrow12x=-6\)
\(\Rightarrow2x=-1\)
\(\Rightarrow x=-\frac{1}{2}\)
\(\left(x+1\right)^3-\left(x-1\right)^2-6\left(x-1\right)^2=-10\)
\(\Rightarrow4\left(3x-1\right)=-2,5\)
\(\Rightarrow12x-4=-10\)
\(\Rightarrow12x=-6\)
\(\Rightarrow2x=-1\)
\(\Rightarrow x=-\frac{1}{2}\)
Tìm x :
a ) \(\left(x-2\right)^2-\left(x-3\right)\left(x+3\right)=6.\)
b ) \(4\left(x-3\right)^2-\left(2x-1\right)\left(2x+1\right)=10\)
Tìm x : \(\left(x-1\right)^3-2\left(x-2\right)^2=\left(2+3x\right)^3-3\left(x+1\right)^2-\left(x-1\right)\left(x-2\right)\)
tìm x biết :
\(\frac{1}{\left(x-1\right)x}+\frac{1}{\left(x-2\right)\left(x-1\right)}+\frac{1}{\left(x-3\right)\left(x-2\right)}+\frac{1}{\left(x-4\right)\left(x-3\right)}=\frac{x}{x^2-4x}\)
Tim x
a) \(\left(x+3\right)^3-x.\left(3x+1\right)^2+\left(2x+1\right).\left(4x^2-2x+1-3x^2\right)=54\)
b) \(\left(x-3\right)^3-\left(x-3\right).\left(x^2+3x+9\right)+6.\left(x+1\right)^2+3x^2=-33\)
Rút gọn : \(\frac{1}{\left(x+y\right)^3}.\left(\frac{1}{x^3}+\frac{1}{y^3}\right)+\frac{3}{\left(x+y\right)^5}\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\frac{6}{\left(x+y\right)^5}\left(\frac{1}{x}+\frac{1}{y}\right)\)
Giải các phương trình:
a) \(\frac{1}{x-1}-\frac{3x^2}{x^3-1}=\frac{2x}{x^2+x+1}\)
b) \(\frac{3}{\left(x-1\right)\left(x-2\right)}+\frac{2}{\left(x-3\right)\left(x-1\right)}=\frac{1}{\left(x-2\right)\left(x-3\right)}\)
c) \(1+\frac{1}{x+2}=\frac{12}{8+x^3}\)
d) \(\frac{13}{\left(x-3\right)\left(2x+7\right)}+\frac{1}{2x+7}=\frac{6}{\left(x-3\right)\left(x+3\right)}\)
a) Tìm x,y biết: x4+x2-y2+y+10=0
b) Tính giá trị biểu thức: \(\frac{\left(1+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right)...\left(29^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)\left(6^4+\frac{1}{4}\right)...\left(30^4+\frac{1}{4}\right)}\)
c ) \(6\left(x+1\right)^2-2\left(x+1\right)^3+2\left(x-1\right)\left(x^2+x+1\right)=1\)
c ) \(6\left(x+1\right)^2-2\left(x+1\right)^3+2\left(x-1\right)\left(x^2+x+1\right)=8\)