Ôn tập toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Duong Thi Nhuong

Tìm x : \(\left(x-3\right)^2-\left(2x+1\right)^2-2\left(x-1\right)\left(x+2\right)=3\left(x-3\right)-\left(4x-1\right)\left(x+2\right)\)

Nguyễn Lê Phước Thịnh
3 tháng 2 2022 lúc 13:20

\(\Leftrightarrow x^2-6x+9-4x^2-4x-1-2\left(x^2+x-2\right)=3\left(x-3\right)-\left(4x^2+8x-x-2\right)\)

\(\Leftrightarrow-3x^2-10x+8-2x^2-2x+4=3\left(x-3\right)-4x^2-7x+2\)

\(\Leftrightarrow-5x^2-12x+12=3x-9-4x^2-7x+2\)

\(\Leftrightarrow-5x^2-12x+12=-4x^2-4x-7\)

\(\Leftrightarrow-4x^2-4x-7+5x^2+12x-12=0\)

\(\Leftrightarrow x^2+8x-19=0\)

\(\text{Δ}=8^2-4\cdot1\cdot\left(-19\right)=76+64=140\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{-8-2\sqrt{35}}{2}=-4-\sqrt{35}\\x_2=-4+\sqrt{35}\end{matrix}\right.\)


Các câu hỏi tương tự
Duong Thi Nhuong
Xem chi tiết
Trần Đăng Nhất
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết
Đỗ Thị Phương Anh
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết
Đỗ Thị Phương Anh
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết