Đại số lớp 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Kagamine Rin

Tìm x:

\(\left|x-2\right|+\left|x-4\right|\)

96neko
10 tháng 3 2017 lúc 21:21

\(\left|x-2\right|+\left|x-4\right|\)

\(=\left|2-x\right|+\left|x-4\right|\ge\left|2-x+x-4\right|\)\(=2\)

\(\Rightarrow\left|x-2\right|+\left|x-4\right|\ge2\)

Dấu" = "xảy ra khi:\(\left(2-x\right).\left(x-4\right)\)\(\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2-x\le0\\x-4\le0\end{matrix}\right.\\\left\{{}\begin{matrix}2-x\ge0\\x-4\ge0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\le2\\x\ge4\end{matrix}\right.\\\left\{{}\begin{matrix}x\ge2\\x\le4\end{matrix}\right.\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x\le2\\x\ge4\end{matrix}\right.\)(ko có số nào thỏa mãn)

\(\left\{{}\begin{matrix}x\ge2\\x\le4\end{matrix}\right.\)\(\Rightarrow2\le x\le4\)

Vậy \(2\le x\le4\)

Nguyễn Hồng Phúc
10 tháng 3 2017 lúc 21:28

\(\left|x-2\right|+\left|x-4\right|\)

\(=\left|2-x\right|+\left|x-4\right|\ge\left|2-x+x-4\right|=\left|-2\right|=2\)

\(\Rightarrow\left|x-2\right|+\left|x-4\right|\ge2\)

Dấu \("="\) xảy ra khi: \(\left(2-x\right)\left(x-4\right)\ge0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}2-x\ge0\\x-4\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}2-x\le0\\x-4\le0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}x\le2\left(loại\right)\\x\ge4\left(loại\right)\end{matrix}\right.\\\left\{{}\begin{matrix}x\ge2\left(TM\right)\\x\le4\left(TM\right)\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow2\le x\le4\)

Vậy GTNN của \(\left|x-2\right|+\left|x-4\right|\) là 1 khi \(2\le x\le4\)

qwerty
10 tháng 3 2017 lúc 21:14

Đề sai chỗ nào rồi


Các câu hỏi tương tự
Nguyễn Minh An
Xem chi tiết
Nguyen Thi Thanh Thao
Xem chi tiết
Diệp Thiên Giai
Xem chi tiết
đỗ thị kiều trinh
Xem chi tiết
chíp chíp
Xem chi tiết
Nguyễn T.Kiều Linh
Xem chi tiết
Bảo Trâm
Xem chi tiết
Nguyen Thi Thanh Thuy
Xem chi tiết
Nguyen Thi Thanh Thao
Xem chi tiết
Thương Thương
Xem chi tiết