\(x=\sqrt[3]{16-\sqrt{255}}+\sqrt[3]{16+\sqrt{255}}\)
\(\Leftrightarrow x^3=16+16+3\cdot x\)
=>x3-3x-32=0
=>\(x\simeq3.49\)
\(x=\sqrt[3]{16-\sqrt{255}}+\sqrt[3]{16+\sqrt{255}}\)
\(\Leftrightarrow x^3=16+16+3\cdot x\)
=>x3-3x-32=0
=>\(x\simeq3.49\)
tính
a. \(\dfrac{\sqrt[3]{125}.\sqrt[3]{\dfrac{16}{10}}.\sqrt[3]{-0,5}}{\sqrt[3]{4}+\sqrt[3]{2}+1}\)
b.\(\sqrt[]{3+\sqrt[]{5}+\sqrt[]{10+6\sqrt[]{5}}}\)
Tính:
a)\(\sqrt[3]{125}.\sqrt[3]{\dfrac{16}{10}}.\sqrt[3]{-0,5}\)
b) \(\dfrac{\sqrt[3]{4}+\sqrt[3]{2}+2}{\sqrt[3]{4}+\sqrt[3]{2}+1}\)
c) \(\sqrt{3}+\sqrt[3]{10+6\sqrt{3}}\)
d) \(\dfrac{4+2\sqrt{3}}{\sqrt[3]{10+6\sqrt{3}}}\)
e) E=\(\sqrt[3]{2+10\sqrt{\dfrac{1}{27}}}+\sqrt[3]{2-10\sqrt{\dfrac{1}{27}}}\)
- Trục căn thức ở mẫu ( mặc dù biết là dễ nhưng làm căn bậc 2 quen rồi, làm cái này mệt lắm, còn vài câu xin cứu trợ :3 )
d) \(\dfrac{1}{\sqrt[3]{16}+\sqrt[3]{12}+\sqrt[3]{9}}\)
e) \(\dfrac{1}{1-\sqrt[3]{x}+\sqrt[3]{x^2}}\)
f) \(\dfrac{1}{\sqrt{x}\sqrt[3]{y}}\) ( x>0, y \(\ne\)0)
Cần gấp lắm, giúp mình với T_T
A =\(\dfrac{x\sqrt[]{x}-3}{x-2\sqrt[]{x}-3}-\dfrac{2\left(\sqrt[]{x}-3\right)}{\sqrt[]{x}+1}+\dfrac{\sqrt[]{x}+3}{3-\sqrt[]{x}}\)
a. rút gọn A
b. Tính A với x = \(14-6\sqrt[]{5}\)
c. tìm min A
A=\(\dfrac{x\sqrt{x}-3}{x-2\sqrt{x}-3}-\dfrac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}+\dfrac{\sqrt{x}+3}{3-\sqrt{x}}\)
a) Rút gọn A
b) Tính A với x=14-6\(\sqrt{5}\)
c) Tìm Min A
giúp em với ạ tính
\(\sqrt[3]{125}.\sqrt[3]{\dfrac{16}{10}}.\sqrt[3]{-0,5}\)
Tính:a)\(\left(\dfrac{1}{2}\sqrt[3]{9}-2\sqrt[3]{3}+3\sqrt[3]{\dfrac{1}{3}}\right)\):\(2\sqrt[3]{\dfrac{1}{3}}\)
b)\(\left(\sqrt[3]{4}+1\right)^3\)-\(\left(\sqrt[3]{4}-1\right)^3\)
c)\(\left(12\sqrt[3]{2}+\sqrt[3]{16}-2\sqrt[3]{2}\right)\)\(\left(5\sqrt[3]{4}-3\sqrt[3]{\dfrac{1}{2}}\right)\)
\(\sqrt[3]{\dfrac{3}{4}}.\sqrt[3]{\dfrac{9}{16}}\)
Giải phương trình:
a)\(\sqrt{2x+3}+\sqrt{x+1}=3x+2\sqrt{2x^2+5x+3}-2\)
b)\(\sqrt{x+4}+\sqrt{x-4}=2x-12+2\sqrt{x^2-16}\)
Rút gọn BT với \(x>0;x\ne8\)
\(P=\dfrac{8-x}{2+\sqrt[3]{x}}:\left(2+\dfrac{\sqrt[3]{x^2}}{2+\sqrt[3]{x}}\right)+\left(\sqrt[3]{x}+\dfrac{2\sqrt[3]{x}}{\sqrt[3]{x}-2}\right)\left(\dfrac{\sqrt[3]{x^2}-1}{\sqrt[3]{x^2}+2\sqrt[3]{x}}\right)\)