\(x^2-9x=0\Leftrightarrow x\left(x-9\right)=0\Leftrightarrow\left\{{}\begin{matrix}x=0\\x-9=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=9\end{matrix}\right.\) vậy \(x=0;x=9\)
\(x^2-9x=0\\ x\left(x-9\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x-9=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=9\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=0\\x=9\end{matrix}\right.\)
Ta có: x2 - 9x= x.( x - 9 )=0
=> x=0 hoặc x-9=0
=> x=0 hoặc x= 9
\(x^2-9x=0\)
\(\Leftrightarrow x.\left(x-9\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x-9=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=9\end{matrix}\right.\)
Vậy x=0 hoặc x=9
\(x^2-9x=0\)
\(x.x-9x=0\)
\(\left(x-9\right).x=0\)
th1:\(x=0\)
th2:\(x-9=0\)
\(x=0+9\)
\(x=9\)
Vậy \(x=0\) hoặc \(x=9\)
\(x^2-9x=0\)
\(xx-9x=0\)
\(x.\left(x-9\right)\)\(=0\)
\(\Rightarrow\left\{{}\begin{matrix}x=0\\x-9=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\x=9\end{matrix}\right.\)
Vậy \(x=0\) hoặc \(x=9\)
\(x^2-9x=0\)
\(\Rightarrow x\left(x-9\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-9=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=9\end{matrix}\right.\)