Đại số lớp 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hoàng Sơn Tùng

Tìm x biết: \(\left|x+\frac{1}{1.2}\right|+\left|x+\frac{1}{1.3}\right|+\left|x+\frac{1}{3.4}\right|+...+\left|x+\frac{1}{99.100}\right|=100x\)

Isolde Moria
4 tháng 11 2016 lúc 20:32

Ta có :

\(\begin{cases}\left|x+\frac{1}{1.2}\right|\ge0\\\left|x+\frac{1}{2.3}\right|\ge0\\...\\\left|x+\frac{1}{99.100}\right|\ge0\end{cases}\)\(\left(\forall x\right)\)

\(\Rightarrow100x>0\)

=> x > 0

=> \(\left|x+\frac{1}{1.2}\right|+\left|x+\frac{1}{2.3}\right|+....+\left|x+\frac{1}{99.100}\right|\)

\(=x+\frac{1}{1.2}+x+\frac{1}{2.3}+.....+x+\frac{1}{99.100}=100x\)

\(\Rightarrow100x+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=100x\)

\(\Rightarrow\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=0\)

Dễ thấy VT \(\ne\)VP

=> \(x\in\varnothing\)

Nguyễn Đình Dũng
4 tháng 11 2016 lúc 20:40

Ta có: \(\left|x+\frac{1}{1.2}\right|\ge0;\left|x+\frac{1}{2.3}\right|\ge0;...;\left|x+\frac{1}{99.100}\right|\ge0\)

=> \(\left|x+\frac{1}{1.2}\right|+\left|x+\frac{1}{2.3}\right|+...+\left|x+\frac{1}{99.100}\right|\ge0\)

=> \(100x\ge0\Rightarrow x\ge0\)

=> \(\left|x+\frac{1}{1.2}\right|=\left(x+\frac{1}{1.2}\right);\left|x+\frac{1}{2.3}\right|=\left(x+\frac{1}{2.3}\right);...;\left|x+\frac{1}{99.100}\right|=\left(x+\frac{1}{99.100}\right)\)=> \(\left(x+\frac{1}{1.2}\right)+\left(x+\frac{1}{2.3}\right)+...+\left(x+\frac{1}{99.100}\right)=100x\)

=> 99x + \(\frac{99}{100}\) = 100x

=> x = \(\frac{99}{100}\)

Nguyễn Huy Tú
4 tháng 11 2016 lúc 20:28

Này ko được chơi đểu nhá!!!

Isolde Moria
4 tháng 11 2016 lúc 20:37

Mình sai đoạn cuối


Các câu hỏi tương tự
Diệp Thiên Giai
Xem chi tiết
linh angela nguyễn
Xem chi tiết
Nguyễn T.Kiều Linh
Xem chi tiết
Lê Ngọc Linh
Xem chi tiết
đỗ thị kiều trinh
Xem chi tiết
Hoàng Thị Minh Phương
Xem chi tiết
Phạm Đức Minh
Xem chi tiết
Nguyen Ngoc Lien
Xem chi tiết
Nguyễn Thị Thùy Linh
Xem chi tiết