Vì `x^4>=0,x^2>=0`
`=>x^4+x^2+1>=1>0`
`=>|x^4+x^2+1|=x^4+x^2+1`
`=>x^4+x^2+1=x^2-x+1`
`=>x^2=-x`
`=>x(x+1)=0`
`=>[(x=0),(x+1=0):}`
`=>[(x=0),(x=-1):}`
Vậy `x=0` hoặc `x=-1`
Ta có: \(\left|x^4+x^2+1\right|=x^2-x+1\)
\(\Leftrightarrow x^4+x^2+1-x^2+x-1=0\)
\(\Leftrightarrow x^4+x=0\)
\(\Leftrightarrow x\left(x+1\right)\left(x^2-x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)