\((x-1)^3=(1-x)^2 \) (ĐK: \(x\geq1)\)
\(\Leftrightarrow x^3-3x^2+3x-1=1-2x+x^2\)
\(\Leftrightarrow x^3-4x^2+5x-2=0\)
\(\Leftrightarrow (x-1)(x^2-3x+2)=0\)
\(\Leftrightarrow x=1 \) hoặc \(x=2\) (t/m)
Vậy \(x=1;x=2\)
\((x-1)^3=(1-x)^2 \) (ĐK: \(x\geq1)\)
\(\Leftrightarrow x^3-3x^2+3x-1=1-2x+x^2\)
\(\Leftrightarrow x^3-4x^2+5x-2=0\)
\(\Leftrightarrow (x-1)(x^2-3x+2)=0\)
\(\Leftrightarrow x=1 \) hoặc \(x=2\) (t/m)
Vậy \(x=1;x=2\)
Tìm x sao cho: \(\left(x-2\right)^3+\left(2x+1\right)^3-9\left(x+1\right)^3=-16\)
Bài 1 : dùng hẳng đẳng thức để khai triển và thu gọn
a) \(\left(2x^2+\frac{1}{3}\right)^3\)
b) \(\left(2x^2y-3xy\right)^3\)
c) \(\left(-3xy^4+\frac{1}{2}x^2y^2\right)^3\)
d) \(\left(-\frac{1}{3}ab^2-2a^3b\right)^3\)
e) \(\left(x+1\right)^3-\left(x-1\right)^3-6.\left(x-1\right).\left(x+1\right)\)
f) \(x.\left(x-1\right).\left(x+1\right)-\left(x+1\right).\left(x^2-x+1\right)\)
g) \(\left(x-1\right)^3-\left(x+2\right).\left(x^2-2x+4\right)+3.\left(x-4\right).\left(x+4\right)\)
h) \(3x^2.\left(x+1\right).\left(x-1\right)+\left(x^2-1\right)^3-\left(x^2-1\right).\left(x^4+x^2+1\right)\)
k) \(\left(x^4-3x^2+9\right).\left(x^2+3\right)+\left(3-x^2\right)^3-9x^2.\left(x^2-3\right)\)
l) \(\left(4x+6y\right).\left(4x^2-6xy+9y^2\right)-54y^3\)
giải pt: \(\dfrac{1}{\left(x-1\right)\left(x-2\right)}+\dfrac{1}{\left(x-3\right)\left(x-2\right)}=\dfrac{1}{\left(x-3\right)\left(x-4\right)}+\dfrac{1}{\left(x-1\right)\left(x-4\right)}\)
Tìm x biết:
\(\left(x-2\right)^3-x^2\left(x-6\right)=4\)
\(\left(x+1\right)^3-x\left(x-2\right)^2+x-1=0\)
Cho biểu thức
A=\(\left[\frac{3\left(x+2\right)}{2\left(x^3+x^2+x+1\right)}+\frac{2x^2-x-10}{2\left(x^3-x^2+x-1\right)}\right]:\left[\frac{5}{x^2+1}+\frac{3}{2\left(x+1\right)}-\frac{3}{2\left(x+1\right)}\right]\)
Tìm x, biết:
a) \(5x\left(x-3\right)^2-5\left(x-1\right)^3+15\left(x+2\right)\left(x-2\right)=5\)
b) \(\left(x+2\right)\left(3-4x\right)=x^2+4x+4\)
giải pt sau
a)\(\left(x-2\right)\left(x-3\right)+2x=\left(x-2\right)^2-2\)
b) \(\left(x-1\right)^2+3x\left(x-1\right)+7=\left(2x-1\right)^2+5\left(x-3\right)\)
c)\(5\left(x^1-2x-1\right)+2\left(3x-2\right)=5\left(x+1\right)^2\)
d)\(\left(x-1\right)\left(x^2+x+1\right)-2x=x\left(x-1\right)\left(x+1\right)\)
Giải PT
\(\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}=\frac{1}{x+1}-403\)
Bài 1:cho phương trình
a,\(\left(x-1\right)^3-x\left(x-1\right)^2=5x\left(2-x\right)-11\left(x+2\right)\)
b,\(\dfrac{\left(x+10\right)\left(x+4\right)}{12}-\dfrac{\left(x+4\right)\left(2-x\right)}{4}=\dfrac{\left(x+10\right)\left(x-2\right)}{3}\)
c,\(\dfrac{2\left(x-3\right)}{7}+\dfrac{x-5}{3}=\dfrac{13x+4}{21}\)
d,\(\dfrac{2x-1}{5}-\dfrac{x-2}{3}=\dfrac{x+7}{5}\)
e,\(\left(x-2\right)^3+\left(3x-1\right)\left(3x+1\right)=\left(x+1\right)^3\)