\(\dfrac{x+1}{2}+\dfrac{x+1}{3}+\dfrac{x+1}{4}=\dfrac{x+1}{5}+\dfrac{x+1}{6}\)
\(\Leftrightarrow\dfrac{x+1}{2}+\dfrac{x+1}{3}+\dfrac{x+1}{4}-\dfrac{x+1}{5}-\dfrac{x+1}{6}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{5}-\dfrac{1}{6}\right)=0\)
Mà \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{5}-\dfrac{1}{6}\ne0\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Vậy ..
\(\dfrac{x+1}{2}+\dfrac{x+1}{3}+\dfrac{x+1}{4}=\dfrac{x+1}{5}+\dfrac{x+1}{6}\)
=> \(\dfrac{x+1}{2}+\dfrac{x+1}{3}+\dfrac{x+1}{4}-\dfrac{x+1}{5}-\dfrac{x+1}{6}\)= 0
(x + 1).(\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{5}-\dfrac{1}{6}\)) = 0
Ta thấy \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{5}-\dfrac{1}{6}\) > 0
=> x + 1 = 0
x = 0 - 1
x = -1
Ta có: \(\dfrac{x+1}{2}+\dfrac{x+1}{3}+\dfrac{x+1}{4}=\dfrac{x+1}{5}+\dfrac{x+1}{6}\)
\(\Rightarrow\left(\dfrac{x+1}{2}+\dfrac{x+1}{3}+\dfrac{x+1}{4}\right)-\left(\dfrac{x+1}{5}+\dfrac{x+1}{6}\right)=0\)\(\Rightarrow\dfrac{x+1}{2}+\dfrac{x+1}{3}+\dfrac{x+1}{4}-\dfrac{x+1}{5}-\dfrac{x+1}{6}=0\)
\(\Rightarrow\left(x+1\right)\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{5}-\dfrac{1}{6}\right)=0\)
Vì \(\dfrac{1}{2}>\dfrac{1}{3}>\dfrac{1}{4}>\dfrac{1}{5}>\dfrac{1}{6}\) nên \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{5}-\dfrac{1}{6}\ne0\)
Do đó, \(x+1=0\)
\(\Rightarrow x=0-1=-1\)
Vậy \(x=-1\)
Ta có :
\(\dfrac{x+1}{2}+\dfrac{x+1}{3}+\dfrac{x+1}{4}=\dfrac{x+1}{5}+\dfrac{x+1}{6}\)
\(\Rightarrow\left(x+1\right).\dfrac{1}{2}+\left(x+1\right).\dfrac{1}{3}+\left(x+1\right).\dfrac{1}{4}=\left(x+1\right).\dfrac{1}{5}+\left(x+1\right).\dfrac{1}{6}\)
\(\Rightarrow\left(x+1\right).\dfrac{1}{2}+\left(x+1\right).\dfrac{1}{3}+\left(x+1\right).\dfrac{1}{4}-\left(x+1\right).\dfrac{1}{5}-\left(x+1\right).\dfrac{1}{6}=0\)
\(\Rightarrow\left(x+1\right).\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{5}-\dfrac{1}{6}\right)=0\)
\(\Rightarrow\left(x+1\right).\dfrac{43}{60}=0\)
Mà \(\dfrac{43}{60}\ne0\)
\(\Rightarrow x+1=0\)
\(\Rightarrow x=-1\)
Vậy \(x=-1\)