\(A=\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+...+\dfrac{2}{x.\left(x+1\right)}=\dfrac{4}{5}\)
⇒ \(A=2.\left(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{x.\left(x+1\right)}\right)=\dfrac{4}{5}\)
⇒ \(A=2.\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{x.\left(x+1\right)}\right)=\dfrac{4}{5}\)
⇒\(A=2.\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\right)=\dfrac{4}{5}\)
⇒\(A=\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{4}{5}:2=\dfrac{2}{5}\)
⇒\(A=\dfrac{1}{x+1}=\dfrac{1}{2}-\dfrac{2}{5}=\dfrac{1}{10}\)
⇒x+1 = 10
⇒ x = 10 - 1
⇒ x = 9