a)√25x = 35
⇔5√x = 35
⇔√x = 7
⇔x = 49
b)√4x ≤ 162
⇔2√x ≤ 162
⇔√x ≤ 81
⇔x ≤ 6561
Suy ra : 0 ≤ x ≤ 6561
c)3√x = 12
⇔3√x = 2√3
⇔√x = 23√3
⇔x = (23√3)2
⇔x = −43
d) 2√x ≥ √10
⇔√x ≥ √102
⇔ x = 52
a)√25x = 35
⇔5√x = 35
⇔√x = 7
⇔x = 49
b)√4x ≤ 162
⇔2√x ≤ 162
⇔√x ≤ 81
⇔x ≤ 6561
Suy ra : 0 ≤ x ≤ 6561
c)3√x = 12
⇔3√x = 2√3
⇔√x = 23√3
⇔x = (23√3)2
⇔x = −43
d) 2√x ≥ √10
⇔√x ≥ √102
⇔ x = 52
a)\(\sqrt{4x}\le162\)
b) 2\(\sqrt{x}\ge\sqrt{10}\)
c) 3\(\sqrt{x}=\sqrt{12}\)
tìm x biết
a. \(\sqrt{25x}=35\)
b. \(\sqrt{4x}\)\(\le162\)
c. 3\(\sqrt{x}=\sqrt{12}\)
d. 2\(\sqrt{x}\ge10\)
e. \(\sqrt{x^2-9}-3\sqrt{x-3}=0\)
f. \(\sqrt{x^2-4}-2\sqrt{x+2}=0\)
Tìm x biết:
a. \(\sqrt{25x}\) =35
b. \(4\sqrt{x}\) = \(\sqrt{48}\)
c. \(\sqrt{144x}\) ≤ 132
d. \(3\sqrt{x}>\sqrt{10}\)
Rút gọn các biểu thức sau với \(x\ge0\)
a) \(4\sqrt{x}-5\sqrt{4x}-\sqrt{25x}-3\sqrt{x}-5\)
b) \(\sqrt{16x}-5\left(\sqrt{x}-2\right)\sqrt{79x}-5\)
1 Tìm x biết :
a \(\sqrt{3x^2}=\sqrt{12}\) ; b\(\sqrt{\left(x-2\right)}^2=3\) ; c\(\sqrt{4.\left(x^2+6x+9\right)=8}\) ; d\(\sqrt{3x^2-6x+3}=\sqrt{3}\) .
2 Hãy biến đổi mẫu thành bình phương của một số hoặc một biểu thức rồi khai phương mẫu(đưa ra ngoài dấu căn)
\(\sqrt{\dfrac{3}{5}};\sqrt{\dfrac{3}{8};}\sqrt{\dfrac{5b}{a}}\left(vớia.b\ge0\right)\)
Rút gọn các biểu thức sau với x >0 hoặc x = 0
a) \(4\sqrt{x}\)- \(5\sqrt{4x}\)-\(\sqrt{25x}\)-\(3\sqrt{x}\)-5
c) \(\sqrt{16x}\)- \(5\left(\sqrt{x}-2\right)\)- \(\sqrt{79x}\)-5
Khai triển và rút gọn biểu thức ( x ≥ 0, y ≥ 0 )
a, \(\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)\)
b, \(\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{x}\sqrt{y}+y\right)\)
c, \(\left(2\sqrt{x}+\sqrt{y}\right)\left(3\sqrt{x}-2\sqrt{y}\right)\)
giải các phương trình
a \(\sqrt{7+\sqrt{2x}=3+\sqrt{5}}\)
b \(\sqrt{3x^2-4x}=2x-3\)
c\(\dfrac{\left(7-x\right)\sqrt{7-x}+\left(x-5\right)\sqrt{x-5}}{\sqrt{7-x}+\sqrt{x-5}}=2\)
bài 1 :Trục căn thức ở mẫu và rút ngọn nếu được.
a) \(\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}\) b) \(\dfrac{26}{5-2\sqrt{3}}\) c) \(\dfrac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}\)
d) \(\dfrac{2\sqrt{10}-5}{4-\sqrt{10}}\) g) \(\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1}-1}-\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1+1}}\)
bài 2: tính giá trị các biểu thức sau:
a)\(\dfrac{2}{\sqrt{7}-5}-\dfrac{2}{\sqrt{7}+5}\) b) \(\dfrac{\sqrt{7}+\sqrt{5}}{\sqrt{7}-\sqrt{5}}+\dfrac{\sqrt{7}-\sqrt{5}}{\sqrt{7}-\sqrt{5}}\)
c) \(\sqrt{12}+\sqrt{48}-\sqrt{(\sqrt{75}-\sqrt{108)}^2}\)
bài 3: thực hiện phép tính.
a) \(\sqrt{(3-2\sqrt{2})^2}+\sqrt{(3+2\sqrt{2})^2}\) b)\(\sqrt{(5-2\sqrt{6})^2}-\sqrt{(5+2\sqrt{6})^2}\)
c) \(\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}\) d) \(\sqrt{7-2\sqrt{10}}-\sqrt{7+2\sqrt{10}}\)
bài 4: thực hiện các phép tính sau.
a) \(\sqrt{125}-4\sqrt{45}+3\sqrt{20}-\sqrt{80}\) b) \(2\sqrt{\dfrac{27}{4}}-\sqrt{\dfrac{48}{9}}\dfrac{2}{5}\sqrt{\dfrac{75}{16}}\)
c) \(\sqrt{8}+\sqrt{72}+\sqrt{98}-5\sqrt{128}\) d) \(2\sqrt{\dfrac{9}{8}}-\sqrt{\dfrac{49}{2}}+\sqrt{\dfrac{25}{18}}\)
bài 5: rút ngọn biểu thức với giả thiết các biểu thức chữ đều có nghĩa.
a) \(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\sqrt{xy}(x>0;y>0)\)
b) \(\dfrac{a+\sqrt{ab}}{b+\sqrt{ab}}(a;b\ge0)\)
bài 6: giải các phương trình sau:\(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)