Do \(\left|2x+3\right|=x+2\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}2x+3=x+2\\2x+3=-\left(x+2\right)\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}2x-x=2-3\\2x+3=-x-2\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-1\\2x+x=-2-3\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-1\\3x=-5\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-1\\x=-\frac{5}{3}\end{array}\right.\)
\(\left|2x+3\right|=x+2\) (1)
+)TH1: \(2x+3\ge0\Rightarrow x\ge-\frac{3}{2}\) yhif pt (1) trở thành
\(2x+3=x+2\Leftrightarrow x=-1\left(Tm\right)\)
+)TH2: \(2x+3< 0\Leftrightarrow x< -\frac{3}{2}\) thi pt (1) trở thành
\(-2x-3=x+2\Leftrightarrow-3x=5\Leftrightarrow x=-\frac{5}{3}\) (TM)
/2x+3/=x+2
=>2x+3=-(x+2) hoặc x+2
Với 2x+3=-(x+2)=>2x+3=-x-2
=>3x=-5 <=>x=-5/3
Với 2x+3=x+2=>2x-x=3-2
=>x=1
Th1: 2x+3≥0
Khi đó: |2x+3| =x+2
-> (2x+3)=x+2
-> 2x+3=x+2
->2x-x=2-3
-> x=-1
Th2: 2x+3 < 0
Khi đó: |2x+3|=x+2
-> -(2x+3)=x+2
-> -2x-3=x+2
-> -3x=5
-> x=-5/3