a, \(\left(x+3\right)^2-x^2+9=0\)
\(\Leftrightarrow x^2+6x+9-x^2+9=0\)
\(\Leftrightarrow6x+18=0\)
\(\Leftrightarrow6x=-18\)
\(\Leftrightarrow x=-3\)
Vậy x = -3.
b, \(\left(x-2\right)\left(x^2+2\right)+\left(2-x\right)3x=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2\right)+\left[-\left(x-2\right)\right]3x=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2\right)-\left(x-2\right)3x=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+3x+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[\left(x^2+x\right)+\left(2x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left[x\left(x+1\right)+2\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\\x=-2\end{matrix}\right.\)
Vậy \(x\in\left\{2;-1;-2\right\}\)