a) \(x^2-100-\left(x+10\right)=0\)
\(x^2-x-90=0\)
\(\left(x-10\right)\left(x+9\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=10\\x=-9\end{matrix}\right.\)
b) \(x^2.\left(x^2+2\right)-x^2-2=0\)
\(x^2\left(x^2+2\right)-\left(x^2+2\right)=0\)
\(\left(x^2+2\right)\left(x^2-1\right)=0\)
\(\left(x^2+2\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2=-2\\x=1\\x=-1\end{matrix}\right.\)
Loại trường hợp \(x^2=-2\) vì x2 \(\ge\) 0 với mọi x
c) \(\left(3x-1\right)^2-\left(9x^2-1\right)=0\)
\(\left(3x-1\right)^2-\left(3x-1\right)\left(3x+1\right)=0\)
\(\left(3x-1\right)\left(3x-1-3x-1\right)=0\)
\(-2.\left(3x-1\right)=0\)
\(3x-1=0\Rightarrow x=\dfrac{1}{3}\)
a,x2-100-(x+10)=0 b,x2(x2+2)-x2-2=0
(x-10)(x+10)-(x+10)=0 x2(x2+2)-(x2+2)=0
(x+10)(x-10-1)=0 (x2-1)(x2+2)=0
(x+10)(x-11)=0 (x-1)(x+1)(x2+2)=0
<=>1)x+10=0 <=>1)x=-10 <=>1)x-1=0 <=>1)x=1
2)x-11=0 2)x=11 2)x+1=0 2)x= -1
Vậy... 3)x2+2=0 3)x2= -2(vô lí)
Vậy....
c,(3x-1)2-(9x2-1)=0
(3x-1)2-(3x-1)(3x+1)=0
(3x-1)(3x-1-3x-1)=0
(3x-1)(-2)=0
<=>3x-1=0
<=>x=\(\dfrac{1}{3}\)
Vậy ....