Lời giải:
a)
$2x(x-1)+x(x-2)=3x^2-1$
$\Leftrightarrow 2x^2-2x+x^2-2x=3x^2-1$
$\Leftrightarrow 3x^2-4x=3x^2-1$
$\Leftrightarrow 4x=1$
$\Leftrightarrow x=\frac{1}{4}$
b)
$(x-4)^2=2(x-4)$
$\Leftrightarrow (x-4)^2-2(x-4)=0$
$\Leftrightarrow (x-4)(x-4-2)=0$
$\Leftrightarrow (x-4)(x-6)=0$
$\Leftrightarrow x=4$ hoặc $x=6$
a) 2x.(x - 1) + x.(x - 2) = 3x2 - 1
2x2 - 2x + x2 - 2x - 3x2 = -1
-4x = -1
\(x=\frac{1}{4}\)
Vậy \(x=\frac{1}{4}\)
b) (x - 4)2 = 2.(x - 4)
(x - 4)2 - 2(x - 4) = 0
(x - 4)(x - 4 - 2) = 0
(x - 4)(x - 6) = 0
\(\Rightarrow\) x - 4 = 0 hoặc x - 6 = 0
*) x - 4 = 0
x = 0 + 4
x = 4
*) x - 6 = 0
x = 0 + 6
x = 6
Vậy x = 4; x = 6