ta có : \(5^x.5^{\left(x+1\right)}.5^{\left(x+2\right)}\le\dfrac{100...0}{2^{18}}\) \(\Leftrightarrow5^{3x+3}\le\dfrac{10^{18}}{2^{18}}=5^{18}\)
\(\)\(\Leftrightarrow3x+3\le18\Leftrightarrow x\le5\) vậy \(x\le5\)
ta có : \(5^x.5^{\left(x+1\right)}.5^{\left(x+2\right)}\le\dfrac{100...0}{2^{18}}\) \(\Leftrightarrow5^{3x+3}\le\dfrac{10^{18}}{2^{18}}=5^{18}\)
\(\)\(\Leftrightarrow3x+3\le18\Leftrightarrow x\le5\) vậy \(x\le5\)
tim x
\(a,\left|\frac{4}{7}-x\right|+\frac{2}{5}=0\)
\(b,6-\left|\frac{1}{4}x+\frac{2}{5}\right|=0\)
\(c,\left|x-\frac{1}{3}\right|+\left|2-\frac{4}{5}\right|=0\)
13) -12( x - 5 ) + 7( 3 - x ) = 5
14) ( x - 2 ) . ( x + 4 ) = 0
15) ( x - 2 ) . ( x + 15 ) = 0
16) ( 7 - x ) . ( x + 19 ) = 0
17 ) -5 < x < 1
18) \(\left|x\right|\) < 3
19) ( x - 3 ) ( x - 5 ) < 0
20) 2x2 - 3 = 29
Tìm x:
e/ \(\left(x-5\right)^4=\left(x-5\right)^6\)
i/ \(\left(x+2\right)^5=2^{10}\)
k/ \(\left(x+1\right)^2=\left(x+1\right)^0\)
l/ \(\left(3x-4\right).\left(x-1\right)^3+0\)
Bai 1: Tim x
a)\(4^5+4^5+4^5+4^5.6^5+6^5+6^5+6^5+6^5+6^5=2^x\)
b)\(x\left(x+3\right)^{100}\)\(=\left(x+3\right)^{100}\)
Tìm \(x\in Z\) biết :
\(a.\left(x-4\right).\left(x-7\right)=0\)
\(b:x.\left(x+3\right)=0\)
\(c:\left(x-2\right)\left(5-x\right)=0\)
\(d:\left(x-1\right).\left(x^2+1\right)=0\)
\(\left(2x-3\right)\left(6-2x\right)=0\)
\(\dfrac{1}{3}x+\dfrac{2}{5}\left(x-1\right)=0\)
\(\left(3x-1\right)\left(-\dfrac{1}{2}x+5\right)=0\)
\(\dfrac{x}{5}=\dfrac{2}{3}\)
\(\dfrac{x}{3}-\dfrac{1}{2}=\dfrac{1}{5}\)
\(\dfrac{x}{5}-\dfrac{1}{2}=\dfrac{6}{10}\)
\(\dfrac{x+3}{15}=\dfrac{1}{3}\)
\(\dfrac{x-12}{4}=\dfrac{1}{2}\)
tìm x thuộc n biết
a) \(\left(x+2\right)^5=2^{10}\)
b) \(5^x:5^2=125\)
c) \(\left(x+1\right)^2=\left(x+1\right)^0\)
d)\(\left(2+x\right)+\left(4+x\right)+\left(6+x\right)+...+\left(52+x\right)=780\)
e)\(70⋮x,80⋮x\) và x>8
f)\(x⋮12,x⋮25,x⋮30\)và 0<x<500
1.
a.\(\left|2x+4\right|+\left|4x+8\right|=0\)
b.\(\left|x-5\right|+\left|x-7\right|=0\)
c.\(\left|x+8\right|-\left|2x+2\right|=0\)
(x+2).(y-3)=5
\(\left|x+2\right|\)+\(\left|y+5\right|\)=0
\(\left|x+2\right|\)+\(^{\left|y^2-4\right|}\)=0
\(\left|x+2\right|\)+(y-\(^{3^2}\))=0