1) Ta có: \(2^{x+2}-2^{x+1}=32\)
\(\Leftrightarrow2^{x+1}\left(2^1-1\right)=32\)
\(\Leftrightarrow2^{x+1}=2^5\)
\(\Leftrightarrow x+1=5\)
hay x=4
Vậy: x=4
2) Ta có: \(3^{x+5}+3^{x+2}=756\)
\(\Leftrightarrow3^{x+2}\left(3^3+1\right)=756\)
\(\Leftrightarrow3^{x+2}\cdot28=756\)
\(\Leftrightarrow3^{x+2}=27\)
\(\Leftrightarrow x+2=3\)
hay x=1
Vậy: x=1
1)
=> \(2^x.2^2-2^x.2=2^5\)
=> \(2^x.\left(2^2-2\right)=32\)
=> \(2^x.2=32\)
=> \(2^x=16\)
=> x=4
2)
=> \(3^x.3^5+3^x.3^2=756\)
=> \(3^x.\left(3^5+3^2\right)=756\)
=> \(3^x.252\)=756
=> \(3^x=3\)
=> x = 1