Ta có:
\(\begin{array}{l}{u_2} = \frac{{{u_1}}}{{1 + {u_1}}} = \frac{1}{{1 + 1}} = \frac{1}{2}\\{u_3} = \frac{{{u_2}}}{{1 + {u_2}}} = \frac{{\frac{1}{2}}}{{1 + \frac{1}{2}}} = \frac{1}{3}\end{array}\)
Suy ra, \({u_n} = \frac{1}{n}\)
Ta có:
\(\begin{array}{l}{u_2} = \frac{{{u_1}}}{{1 + {u_1}}} = \frac{1}{{1 + 1}} = \frac{1}{2}\\{u_3} = \frac{{{u_2}}}{{1 + {u_2}}} = \frac{{\frac{1}{2}}}{{1 + \frac{1}{2}}} = \frac{1}{3}\end{array}\)
Suy ra, \({u_n} = \frac{1}{n}\)
Cho dãy số \(\left( {{u_n}} \right)\) xác định bởi: \(\left\{ \begin{array}{l}{u_1} = 3\\{u_{n + 1}} = 2{u_n}\left( {n \ge 1} \right)\end{array} \right.\).
a) Chứng minh \({u_2} = 2.3;{u_3} = {2^2}.3;{u_4} = {2^3}.3\).
b) Dự đoán công thức số hạng tổng quát của dãy số \(\left( {{u_n}} \right)\)
Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \frac{1}{{1.2}} + \frac{1}{{2.3}} + ... + \frac{1}{{n\left( {n + 1} \right)}}\). Tìm \({u_1},{u_2},{u_3}\) và dự đoán công thức số hạng tổng quát \({u_n}\).
Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \frac{1}{n}\). So sánh các số hạng của dãy số với 0 và 1.
Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \frac{{na + 2}}{{n + 1}}\). Tìm giá trị của \(a\) để:
a) \(\left( {{u_n}} \right)\) là dãy số tăng;
b) \(\left( {{u_n}} \right)\) là dãy số giảm.
Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \frac{{2n - 1}}{{n + 1}}\).
Chứng minh \(\left( {{u_n}} \right)\) là dãy số tăng và bị chặn.
Xét tính tăng, giảm của các dãy số sau:
a) \(\left( {{u_n}} \right)\) với \({u_n} = \frac{{2n - 1}}{{n + 1}}\);
b) \(\left( {{x_n}} \right)\) với \({x_n} = \frac{{n + 2}}{{{4^n}}}\);
c) \(\left( {{t_n}} \right)\) với \({t_n} = {\left( { - 1} \right)^n}.{n^2}\).
Xét tính bị chặn của các dãy số sau:
a) \(\left( {{a_n}} \right)\) với \({a_n} = {\sin ^2}\frac{{n\pi }}{3} + \cos \frac{{n\pi }}{4}\);
b) \(\left( {{u_n}} \right)\) với \({u_n} = \frac{{6n - 4}}{{n + 2}}\)
Cho các dãy số \(\left( {{a_n}} \right),\left( {{b_n}} \right),\left( {{c_n}} \right),\left( {{d_n}} \right)\) được xác định như sau.
• \({a_1} = 0;{a_2} = 1;{a_3} = 2;{a_4} = 3;{a_5} = 4\).
• \({b_n} = 2n\).
• \(\left\{ \begin{array}{l}{c_1} = 1\\{c_n} = {c_{n - 1}} + 1\left( {n \ge 2} \right)\end{array} \right.\).
• \({d_n}\) là chu vi của đường tròn có bán kính \(n\).
Tìm bốn số hạng đầu tiên của các dãy số trên.
Một chồng cột gỗ được xếp thành các lớp, hai lớp liên tiếp hơn kém nhau 1 cột gỗ (Hình 1). Gọi \({u_n}\) là số cột gỗ nằm ở lớp thứ 2 tính từ trên xuống và cho biết lớp trên cùng có 14 cột gỗ. Hãy xác định dãy số \(\left( {{u_n}} \right)\) bằng hai cách:
a) Viết công thức số hạng tổng quát \({u_n}\).
b) Viết hệ thức truy hồi.