Bài 6: Ôn tập chương Đạo hàm

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sennn

tìm tất cả đa thức f(x) với hệ số nguyên thỏa 16f(x^2) =(f(2x))^2

Nguyễn Việt Lâm
26 tháng 3 2022 lúc 22:24

Gọi số hạng có bậc cao nhất của \(f\left(x\right)\) là \(a_n.x^n\)

\(\Rightarrow\) Số hạng bậc cao nhất của \(16f\left(x^2\right)\) là \(16.\left(a_nx^n\right)^2=16a_n^2.x^{2n}\)

Số hạng bậc cao nhất của \(f^2\left(2x\right)\) là: \(\left(a_n.2x^n\right)^2=4a_n^2.x^{2n}\)

Đồng nhất hệ số 2 vế ta được: \(16a_n^2=4a_n^2\Rightarrow a_n=0\)

Hay mọi số hạng chứa x của đa thức đã cho đều có hệ số bằng 0

\(\Rightarrow\) Đa thức đã cho là đa thức hằng

Hay \(f\left(x\right)=k\) với mọi x

Thay vào đề bài: \(16k=k^2\Rightarrow\left[{}\begin{matrix}k=0\\k=16\end{matrix}\right.\)

Vậy có 2 đa thức thỏa mãn: \(\left[{}\begin{matrix}f\left(x\right)\equiv0\\f\left(x\right)\equiv16\end{matrix}\right.\)


Các câu hỏi tương tự
Thanh Thanh
Xem chi tiết
Ngô Chí Thành
Xem chi tiết
huỳnh hải dương
Xem chi tiết
Lan Kiều
Xem chi tiết
Charlotte Grace
Xem chi tiết
Minh Nguyệt
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
nguyễn thị quỳnh anh
Xem chi tiết