a) \(a\in N\) ( vì \(-\frac{3}{4}\ne\left|-\frac{3}{4}\right|\)
b) \(a\in\left\{....;-3;-2;-1\right\}\)
c) \(a\in\varnothing\)
d) \(a\in\left\{....;-3;-2;-1\right\}\)
a) \(a\in N\) ( vì \(-\frac{3}{4}\ne\left|-\frac{3}{4}\right|\)
b) \(a\in\left\{....;-3;-2;-1\right\}\)
c) \(a\in\varnothing\)
d) \(a\in\left\{....;-3;-2;-1\right\}\)
Tìm các số nguyên dương a, b, c, d thỏa mãn a! + b! + c! = 2d! trong đó kí hiệu n! = 1.2.3...n.
cho 3 số a,b,c khác 0 và a+b+c không bằng 0 thỏa mãn điều kiện a/b+c =b/a+c = c/a+b
tính giá trị biểu thức P=b+c/a + a+c/b + a+b/c
Bài 5. Tìm giá trị lớn nhất của các biểu thức sau:
a) C = - + b) D = - 3 -
Bài 6. Cho bốn số a, b, c, d thoả mãn điều kiện b 2 = ac; c 2 = bd. Chứng minh
Cho a, b, c thỏa mãn điều kiện : a+b=3(b+c)=4(c+a) . Chứng minh rằng 9a=8b+c
cho A và C là 2 số khác 0 và thỏa mãn các điều kiện sau CA chia hết cho 8, AC là số lập phương
Cho a,b,c là 3 số thực khác , thỏa mãn điều kiện: \(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
Tính giá trị biểu thực P=\(\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)\)
cho các số a,b,c thỏa mãn\(\dfrac{a+b-c}{c}=\dfrac{a+c-b}{b}=\dfrac{b+c-a}{a}.TínhA=\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\).Mong các cậu giúp>_<
1) Với điều kiện nào của a và b thì ta có tỉ lệ thức \(\frac{a}{b}=\frac{a+c}{b+c}\) với c \(\ne\) 0
2) Cho các số a,b,c,d \(\ne\) 0, thỏa mãn b2 = ac; c2 = bd; b3 + c3 +d3 \(\ne\) 0
Chứng minh: \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
Tìm số tự nhiên M nhỏ nhất có 4 chữ số thỏa man điều kiện :
M = a + b = c + d = e + f
Biết a,b,c,d,e,f thuộc N* và \(\frac{a}{b}=\frac{14}{22};\frac{c}{d}=\frac{11}{13};\frac{e}{f}=\frac{13}{17}\)