\(\sqrt{3x^2-3}=\sqrt{m-x^3}\)(1)
đk: \(\left\{{}\begin{matrix}\left|x\right|\ge1\\x\le\sqrt[3]{m}\end{matrix}\right.\)(*) \(\Rightarrow3x^2-3=m-x^3\)(2)
để (1) có hai nghiệm phân biệt => (2) phải có hai nghiệm phân biệt thủa mãn (*)
\(\left(2\right)\Leftrightarrow x^3+3x^2-3-m=0\)
\(\Leftrightarrow\left(x+1\right)^3-3\left(x+1\right)-1-m=0\) đặt \(x+1=y\Rightarrow\left[{}\begin{matrix}y\le0\\y\ge2\end{matrix}\right.\)
\(\Leftrightarrow y^3-3y=m+1\)
xét VP
xét khi y<=0
\(A=y^3-3y\)
có \(2-A=2-y^3+3y=\left(2-y\right)\left(y+1\right)^2\) \(\left\{{}\begin{matrix}y\le0\\2-y\ge0\\\left(y+1\right)^2\ge0\end{matrix}\right.\) \(\Rightarrow\left(2-y\right)\left(y+1\right)^2\ge0\)
Vậy \(2-A\ge0\Rightarrow\left\{{}\begin{matrix}y\le0\\A\le2\end{matrix}\right.\)
xét khi y>=2
\(\left\{{}\begin{matrix}y\ge2\\2-y\le0\end{matrix}\right.\) \(\Rightarrow2-A\le0\Rightarrow A\ge2\)
Kết luận: để (1) có đúng 2 nghiệm VT=m+1=2=> m=1
Thử lại với m=1 có hai nghiệm \(\left[{}\begin{matrix}y=-1\\y=2\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\) thỏa mãn (*)
Bổ xung:
\(0\le VP\le2\Rightarrow0\le m+1\le2\Rightarrow-1\le m\le1\)
Kết luận: \(\left|m\right|\le1\)