Biến đổi bt tương đương : (x^2-1)/2 =y^2
Ta có: vì x,y là số nguyên dương nên
+) x>y và x phải là số lẽ.
Từ đó đặt x=2k+1 (k nguyên dương);
Biểu thức tương đương 2*k*(k+1)=y^2 (*);
Để ý rằng:
Y là 1 số nguyên tố nên y^2 sẽ là 1 số nguyên dương mà nó có duy nhất 3 ước là :
{1,y, y^2} ;
từ (*) dễ thấy y^2 chia hết cho 2, dĩ nhiên y^2 không thể là 2, vậy chỉ có thể y=2 =>k=1;
=>x=3.
Vậy ta chỉ tìm được 1 cặp số nguyên tố thoả mãn bài ra là x=3 và y=2 (thoả mãn).
x2-2y2=1
=>x2-1=2y2
=>x2-12=2y2
=>(x-1)(x+1)=2y2=y.2y
+)(x-1)(x+1)=2y2
=>x-1=2 và x+1=y2
=>x=3 và x+1=y2
Có x=3,thay vào x+1=y2=>3+1=y2=>y2=4=>y E {-2;2},Mà y là số nguyên tố=>y=2
+)(x-1)(x+1)=y.2y
=>x-1=y và x+1=2y
=>x=y+1 và x+1=2y
Có x=y+1,thay vào x+1=2y => (y+1)+1=2y=>y+2=2y=>2y-y=2=>y=2
do đó x=2+1=>x=3
Vậy tất cả cặp số nguyên tố (x;y) thỏa mãn đề bài là (3;2)
cách này dễ hiểu hơn nè
kq: x=3; y=2 bn ạ. cách giải như bn bên dưới nha
Ta có: x2 \(\ge\) 1 + 2 . 22 = 9 \(\Rightarrow\) x \(\ge\) 3 \(\Rightarrow\) x lẻ.
Do x lẻ nên x chia cho 4 dư 1 hoặc 3 \(\Rightarrow\) x2 chia cho 4 dư 1
\(\Rightarrow\) 2y2 \(⋮\) 4
\(\Rightarrow\) y2 \(⋮\) 2
\(\Rightarrow\) y \(⋮\) 2 (Vì 2 là số nguyên tố)
\(\Rightarrow\) y = 2 (Vì y là số nguyên tố)
\(\Rightarrow\) x = 3 (thỏa mãn)
Vậy....