a) \(a=12,4\pi=12\pi+0,4\pi=6.2\pi+0,4\pi\).
Suy ra: \(x=0,4\pi\).
b) \(a=-\dfrac{9}{5}\pi=-2\pi+\dfrac{1}{5}\pi\).
Suy ra: \(x=\dfrac{1}{5}\pi\).
c) \(a=\dfrac{13}{4}\pi=2\pi+\dfrac{5}{4}\pi\)
Suy ra: \(x=\dfrac{5}{4}\pi\).
a) \(a=12,4\pi=12\pi+0,4\pi=6.2\pi+0,4\pi\).
Suy ra: \(x=0,4\pi\).
b) \(a=-\dfrac{9}{5}\pi=-2\pi+\dfrac{1}{5}\pi\).
Suy ra: \(x=\dfrac{1}{5}\pi\).
c) \(a=\dfrac{13}{4}\pi=2\pi+\dfrac{5}{4}\pi\)
Suy ra: \(x=\dfrac{5}{4}\pi\).
tính B=\(\sin\left(\dfrac{\pi}{4}+x\right)-\cos\left(\dfrac{\pi}{4}\right)-x\)
Xác định điểm cuối của các cung lượng giác
a) \(\alpha=\dfrac{-2\pi}{3}\)
b) \(\alpha=k.2\pi\)
c) \(\alpha=\pi+k.2\pi\)
d) \(\alpha=\dfrac{\pi}{3}+k.\pi\)
e) \(\alpha=\dfrac{\pi}{4}+\dfrac{k.\pi}{2}\)
Trên đường tròn lượng giác gốc A, xác định các điểm M khác nhau, biết rằng cung AM có số đo tương ứng là (trong đó k là một số nguyên tùy ý)
a) \(k\pi\)
b) \(k\dfrac{\pi}{2}\)
c) \(k\dfrac{\pi}{3}\)
1; tính B \(=4sin^4\dfrac{\pi}{16}+2cos\dfrac{\pi}{8}\)
2;tính C= \(\dfrac{\sin\dfrac{\pi}{5}-\sin\dfrac{2\pi}{15}}{\cos\dfrac{\pi}{5}-\cos\dfrac{2\pi}{15}}\)
3; tính D=\(\sin\dfrac{\pi}{9}-sin\dfrac{5\pi}{9}+sin\dfrac{7\pi}{9}\)
Trên đường tròn lượng giác gốc A cho các cung có số đo:
I. \(\dfrac{\pi}{4}\) II. \(-\dfrac{7\pi}{4}\) III. \(\dfrac{13\pi}{4}\) IV. \(-\dfrac{71\pi}{4}\)
Tìm số điểm biểu diễn cung có số đo \(x=\frac{\pi}{4}+\frac{k\pi}{3}\)trên khoảng \(\left(\frac{-2\pi}{3};\frac{5\pi}{6}\right)\)
1;tính A= \(\dfrac{1}{\cos290^o}+\dfrac{1}{\sqrt{3}\sin250^o}\)
2; tính B = (1+tan 20o) ( 1+tan25o)
3; tính tan9o-tan27o-tan63o+ tan81o
4; tính D= \(\sin^2\dfrac{\pi}{9}+\sin^2\dfrac{2\pi}{9}+\sin\dfrac{\pi}{9}\sin\dfrac{2\pi}{9}\)
5; tính E;= \(\sin\dfrac{\pi}{32}\cos\dfrac{\pi}{32}\cos\dfrac{\pi}{16}\cos\dfrac{\pi}{8}\)
Trên đường tròn lượng giác hãy biểu diễn các cung có số đo :
a) \(-\dfrac{5\pi}{4}\)
b) \(135^0\)
c) \(\dfrac{10\pi}{3}\)
d) \(-225^0\)
1. Tinh cac gia tri luong giac cua goc \(\alpha\), biet:
a, cos\(\alpha\) \(=\) \(\dfrac{4}{5}\) ,biet \(\dfrac{3\pi}{2}\) <\(\alpha\) <2\(\pi\)
b, tan \(\alpha=\dfrac{5}{18},\pi< \alpha< \dfrac{3\pi}{2}\)