Vì : \(n+9⋮n+3\)
Mà : \(n+3⋮n+3\)
\(\Rightarrow\left(n+9\right)-\left(n+3\right)⋮n+3\)
\(\Rightarrow n+9-n-3⋮n+3\)
\(\Rightarrow6⋮n+3\)
\(\Rightarrow n+3\inƯ\left(6\right)\)
Mà : \(Ư\left(6\right)=\left\{1;2;3;6\right\}\) ; \(n+3\ge3\)
\(\Rightarrow n+3\in\left\{3;6\right\}\)
+) \(n+3=3\Rightarrow n=3-3\Rightarrow n=0\)
+) \(n+3=6\Rightarrow n=6-3\Rightarrow n=3\)
Vậy : \(n\in\left\{0;3\right\}\)
n+9\(⋮\)n+3
n+3-12\(⋮\)n+3
Vì n+3\(⋮\)n+3
Buộc 12\(⋮\)n+3=>n+3ϵƯ(12)={1;2;3;4;6;12}
ta có bảng sau :
n+3 | 1 | 2 | 3 | 4 | 6 | 12 |
n | -2 | -1 | 0 | 1 | 3 | 9 |
Vậy n ϵ {0;1;3;9}