Vì : \(\left(n+6\right)⋮\left(n-4\right)\)
Mà : \(n-4⋮\left(n-4\right)\)
\(\Rightarrow\left(n+6\right)-\left(n-4\right)⋮n-4\)
\(\Rightarrow\left(n+6-n+4\right)⋮n-4\)
\(\Rightarrow10⋮n-4\Rightarrow n-4\inƯ\left(10\right)\)
\(Ư\left(10\right)=\left\{1;2;5;10\right\}\)
+) Nếu : n - 4 = 1 => n = 5
+) Nếu : n - 4 = 2 => n = 6
+) Nếu : n - 4 = 5 => n = 9
+) Nếu : n - 4 = 10 => n = 14
Vậy : \(n\in\left\{5;6;9;14\right\}\)
b, \(\left(2n+12\right)⋮n-2\)
Mà : \(\left(n-2\right)⋮n-2\Rightarrow2\left(n-2\right)⋮n-2\Rightarrow2n-4⋮n-2\)
\(\Rightarrow\left(2n+12\right)-\left(2n-4\right)⋮n-2\)
\(\Rightarrow\left(2n+12-2n+4\right)⋮n-2\)
\(\Rightarrow16⋮n-2\)\(\Rightarrow n-2\inƯ\left(16\right)\)
\(Ư\left(16\right)=\left\{1;2;4;8;16\right\}\)
+) Nếu : n - 2 = 1 => n = 3
+) Nếu : n - 2 = 2 => n = 4
+) Nếu : n - 2 = 4 => n = 6
+) Nếu : n - 2 = 8 => n = 10
+) Nếu : n - 2 = 16 => n = 18
Vậy : \(n\in\left\{3;4;6;10;18\right\}\)
a, (n+6)\(⋮\)(n-4)
(n-4)+10\(⋮\)(n-4)
Vì (n-4)\(⋮\)(n-1)
Buộc 10 \(⋮\)(n-4)=>n-4ϵƯ(10)={1;2;5;10}
Với n-4=1=>n=5
n-4=2=>n=6
n-4=5=>n=9
n-4=10=>n=14
Vậy n ϵ {5;6;9;14}
b, (2n+12)\(⋮\)(n-2)
(2n-4)+16\(⋮\)(n-2)
2(n-2)+16\(⋮\)(n-2)
Vì (n-2)\(⋮\)(n-2)=>2(n-2)\(⋮\)(n-2)
Buộc 16 \(⋮\)(n-2)=>n-2 ϵ Ư(16)={1;2;4;8;16}
Với n-2=1=>n=3
n-2=2=>n=4
n-2=4=>n=6
n-2=8=>n=10
n-2=16=>n=18
Vậy n ϵ { 3;4;6;10;18}