\(\sqrt{1^3+2^3}=\sqrt{\left(1+2\right)^2}=3\)
\(\sqrt{1^3+2^3+3^3}=\sqrt{\left(1+2+3\right)^2}=1+2+3=6\)
=>\(\sqrt{1^3+2^3+...+n^3}=\left(1+2+...+n\right)\)
=>\(\dfrac{1}{3}+\dfrac{1}{6}+...+\dfrac{1}{1+2+...+n}=\dfrac{2015}{2017}\)
\(\Leftrightarrow\dfrac{2}{6}+\dfrac{2}{12}+...+\dfrac{2}{n\left(n+1\right)}=\dfrac{2015}{2017}\)
\(\Leftrightarrow2\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{n}-\dfrac{1}{n+1}\right)=\dfrac{2015}{2017}\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{n+1}=\dfrac{2015}{4034}\)
=>1/(n+1)=1/2017
=>n+1=2017
=>n=2016