a: Để A là số nguyên thì \(13⋮x-1\)
\(\Leftrightarrow x-1\in\left\{1;-1;13;-13\right\}\)
hay \(x\in\left\{2;0;14;-12\right\}\)
b. Ta có \(B=\dfrac{x+3}{x-2}=\dfrac{x-2+3+2}{x-2}=1+\dfrac{5}{x-2}\)
Để \(B\) nhận giá trị nguyên thì\(5⋮\left(x-2\right)\Rightarrow\left(x-2\right)\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
\(\Rightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\\x-2=5\\x-2=-5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt{x}=3\\\sqrt{x}=1\\\sqrt{x}=7\\\sqrt{x}=-3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=9\\x=1\\x=49\end{matrix}\right.\)
Vậy tất cả các x thỏa mãn ycbt là x=9; x=1 hoặc x=49
b: Để \(\dfrac{x+3}{x-2}\) là số nguyên thì \(x+3⋮x-2\)
\(\Leftrightarrow5⋮x-2\)
\(\Leftrightarrow x-2\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{3;1;7;-3\right\}\)