\(A=\dfrac{\sqrt{x}}{\sqrt{x}+2}\)
\(=1-\dfrac{2}{\sqrt{x}+2}\)
Để \(A\in Z\) \(\Rightarrow\dfrac{2}{\sqrt{x}+2}\in Z\) mà \(\sqrt{x}\ge0\)
\(\Rightarrow\sqrt{x}+2\ge2\)
\(\Rightarrow\sqrt{x}+2=2\)
\(\Rightarrow\sqrt{x}=0\)
Vậy x = 0
\(A=\dfrac{\sqrt{x}}{\sqrt{x}+2}\)
\(=1-\dfrac{2}{\sqrt{x}+2}\)
Để \(A\in Z\) \(\Rightarrow\dfrac{2}{\sqrt{x}+2}\in Z\) mà \(\sqrt{x}\ge0\)
\(\Rightarrow\sqrt{x}+2\ge2\)
\(\Rightarrow\sqrt{x}+2=2\)
\(\Rightarrow\sqrt{x}=0\)
Vậy x = 0
tìm các số nguyên x để các biểu thức sau có giá trị nguyên: a)A =7/2X-3 b) B= 2X-1/X-1 c) C=5/x^2 - 3
Cho \(A=\dfrac{\sqrt{x}-3}{2}\). Tìm \(x\in\mathbb{Z}\) và \(x< 30\) để A có giá trị nguyên ?
Cho \(B=\dfrac{5}{\sqrt{x}-1}\). Tìm \(x\in\mathbb{Z}\) để B có giá trị nguyên ?
Cho \(A=\sqrt{x+2}+\dfrac{3}{11};B=\dfrac{5}{17}-3\sqrt{x-5}\)
a) Tìm giá trị nhỏ nhất của A
b) Tìm giá trị lớn nhất của B
Bài 1 : Tìm giá trị lớn nhất của biểu thức biết
a, y = \(\dfrac{5}{7+\sqrt{x}}\)
b, y = \(\dfrac{\sqrt{x+1}+13}{\sqrt{x+1}+4}\)
Bài 2 : Tìm giá trị nhỏ nhất của biểu thức A = \(\sqrt{x-1}+\sqrt{2x-2}+\sqrt{3x-3}+15\)
Tìm các số nguyên x để các biểu thức sau có gtrị là 1 số nguyên:
a)\(A=\dfrac{7}{\sqrt{x}}\)
b)\(B=\dfrac{3}{\sqrt{x}-1}\)
c)\(C=\dfrac{2}{\sqrt{x}-3}\)
a, Tìm GTLN của biểu thức: A= \(1-\sqrt{x+\sqrt{2}}\)
b, Tìm GTNN của biểu thức: B= \(\sqrt{x+2}+\dfrac{1}{5}\)
1) Tìm x biết:
a)\(\sqrt{x+2}\) = \(\dfrac{5}{7}\)
b) \(\sqrt{x+2}\) - 8=1
c) 4- \(\sqrt{x-0,2}\) =0,5
2) Tìm giá trị nhỏ nhất của biểu thức sau:
a) A = \(\sqrt{x+24}\) +\(\dfrac{4}{7}\)
b)B = \(\sqrt{2x+\dfrac{4}{13}}\) - \(\dfrac{13}{191}\)
Bài 1 : Kí hiệu [x] là số nguyên lớn nhất không vượt qua x. Tìm [x] biết :
a) x = \(\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}\) ( n dấu căn )
b) x = \(\left[\sqrt{1}\right]+\left[\sqrt{2}\right]+\left[\sqrt{3}\right]+...+\left[\sqrt{100}\right]\)
Bài 2 : Tìm x để A có giá trị nguyên:
a) A = \(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
b) A = \(\dfrac{\sqrt{x}+3}{2\sqrt{x}+1}\)
c) A = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\) với \(x\) thuộc Z