\(xy^2+2xy+x=32y\)
\(\Leftrightarrow x\left(y^2+2y+1\right)=32y\)
\(\Leftrightarrow x=\dfrac{32y}{y^2+2y+1}\Leftrightarrow x=\dfrac{32y}{\left(y+1\right)^2}\)
\(\Leftrightarrow x=\dfrac{32}{y+1}-\dfrac{32}{\left(y+1\right)^2}\)
Để x nguyên dương thì
\(\left(y+1\right)^2\inƯ\left(32\right)\) và \(\left(y+1\right)^2\) là số chính phương
=> \(\left(y+1\right)^2=\left\{1;4;16\right\}\)
\(\Leftrightarrow y+1=\left\{1;2;4\right\}\)
\(\Leftrightarrow y=\left\{0;1;3\right\}\) vì y nguyên dương nên: \(\left[{}\begin{matrix}y=1\Rightarrow x=8\\y=3\Rightarrow x=6\end{matrix}\right.\)
Vậy(x;y) = {8;1) ; (6;3)