a) \(\left\{ \begin{array}{l}{u_5} = 96\\{u_6} = 192\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}.{q^4} = 96\\{u_1}.{q^5} = 192\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}.{q^4} = 96\\\left( {{u_1}.{q^4}} \right).q = 192\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}.{q^4} = 96\\96q = 192\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}q = 2\\{u_1} = 6\end{array} \right.\)
Vậy cấp số nhân \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1} = 6\) và công bội \(q = 2\).
b)
\(\left\{ \begin{array}{l}{u_4} + {u_2} = 60\\{u_5} - {u_3} = 144\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}.{q^3} + {u_1}.q = 60\\{u_1}.{q^4} - {u_1}.{q^2} = 144\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}.q\left( {{q^2} + 1} \right) = 60\left( 1 \right)\\{u_1}.{q^2}\left( {{q^2} - 1} \right) = 144\left( 2 \right)\end{array} \right.\)
Do \({u_1} = 0\) và \(q = 0\) không là nghiệm của hệ phương trình nên chia vế với vế của (2) cho (1) ta được:
\(\frac{{q\left( {{q^2} - 1} \right)}}{{{q^2} + 1}} = \frac{{144}}{{60}} \Leftrightarrow \frac{{q\left( {{q^2} - 1} \right)}}{{{q^2} + 1}} =\frac{{12}}{{5}} \Leftrightarrow 5q\left( {{q^2} - 1} \right) = 12\left( {{q^2} + 1} \right)\)
\( \Leftrightarrow 5{q^3} - 12q = 5{q^2} + 12 \Leftrightarrow 5{q^3} - 12{q^2} - 5q - 12 = 0 \Leftrightarrow q=3\) thế vào (1) ta được \({u_1}=2\).
Vậy cấp số nhân \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1} = 2\) và công bội \(q = 3\).