Ta nhận thấy rằng nếu a = 2 thì \(9\overline{abcd}\) là một số có nhiều hơn 4 chữ số (trái với giả thiết)
Vậy 0< a <2 , mà a là số tự nhiên nên a = 1 thỏa mãn đề bài.
Suy ra \(9\times\overline{1bcd}=\overline{dcb1}\)
Chú ý rằng 9d có tận cùng bằng 1 khi d = 9 (duy nhất)
Vậy ta có \(9\times\overline{1bc9}=\overline{9cb1}\)
Mặt khác, vế trái của đẳng thức chia hết cho 9 , vậy vế phải cũng chia hết cho 9.
Do vậy 9 + c + b + 1 = 10 + b + c chia hết cho 9
Vậy b+c chỉ thuộc các giá trị là 8 và 17 (các giá trị lớn hơn loại vì b+c < 19)
Với mỗi trường hợp ta chọn các giá trị của b từ 1 đến 9 , đồng thời ta cũng tìm được giá trị của c tương ứng.
Tới đây bạn tự làm nhé ^^