Lời giải:
\(F(x)=\int \frac{x^3+3x^2+3x-1}{x^2+2x+1}dx=\int \frac{x^3+3x^2+3x+1-2}{(x+1)^2}dx\)
\(=\int \frac{(x+1)^3-2}{(x+1)^2}dx\)
\(=\int \left(x+1-\frac{2}{(x+1)^2}\right )dx\)
\(=\int (x+1)dx-2\int \frac{dx}{(x+1)^2}=\int (x+1)dx-2\int \frac{d(x+1)}{(x+1)^2}\)
\(=\frac{x^2}{2}+x+\frac{2}{x+1}+c\)
Vì \(F(1)=\frac{1}{3}\Leftrightarrow \frac{1}{2}+1+\frac{2}{1+1}+c=\frac{1}{3}\)
\(\Leftrightarrow c+\frac{5}{2}=\frac{1}{3}\Leftrightarrow c=\frac{-13}{6}\)
Do đó: \(F(x)=\frac{x^2}{2}+x+\frac{2}{x+1}-\frac{13}{6}\)
a/b=thương+(số dư/số chia)
đáng lẽ phải học mấy pp này chứ ?