Bài 1: Số phức

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Tuấn Đỗ

Tìm nghiệm phức \(\frac{\left|z\right|^4}{z^2}\)+\(\overline{z}\)=\(\frac{-200}{1-7i}\)

Nguyễn Hoàng Việt
13 tháng 2 2017 lúc 21:48

Xét riêng: \(\frac{\left|z\right|^4}{z^2}=\left(\frac{\left|z\right|^2}{z}\right)^2=\left(\left|z\right|^2\cdot\frac{\overline{z}}{\left|z\right|^2}\right)=\left(\overline{z}\right)^2=w\)

Thay w vào phương trình, ta có:

\(w^2+w+\frac{200}{1-7i}=0\\ \Delta=1-4\cdot\frac{200}{1-7i}=-15-112i\\ \Rightarrow\Delta=\left(7-8i\right)^2\)

Phương trình có 2 nghiệm là:

\(\left[\begin{matrix}w=-4+4i\\w=3-4i\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}z=-4-4i\\z=3+4i\end{matrix}\right.\)


Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
Kiên Đỗ
Xem chi tiết
Tuấn Đỗ
Xem chi tiết
Du Thien Thuat
Xem chi tiết
Tuấn Đỗ
Xem chi tiết
Nguyễn Trần Khánh Linh
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết