1. Cho pt: x2 -2(m+1)x+m2=0 (1). Tìm m để pt có 2 nghiệm x1 ; x2 thỏa mãn (x1-m)2 + x2=m+2.
2. Giai pt: \(\left(x-1\right)\sqrt{2\left(x^2+4\right)}=x^2-x-2\)
3. Giai hệ pt: \(\left\{{}\begin{matrix}\frac{1}{\sqrt[]{x}}-\frac{\sqrt{x}}{y}=x^2+xy-2y^2\left(1\right)\\\left(\sqrt{x+3}-\sqrt{y}\right)\left(1+\sqrt{x^2+3x}\right)=3\left(2\right)\end{matrix}\right.\)
4. Giai pt trên tập số nguyên \(x^{2015}=\sqrt{y\left(y+1\right)\left(y+2\right)\left(y+3\right)}+1\)
Tìm nghiệm nguyên của pt: \(5\left(x^2+xy+y^2\right)=7\left(x+2y\right)\)
CMR nếu \(\left|a\right|>2\) thì hệ pt \(\left\{{}\begin{matrix}x^5-2y=a\left(1\right)\\x^2+y^2=1\left(2\right)\end{matrix}\right.\) vô nghiệm
Giải hệ pt:
\(\left\{{}\begin{matrix}\left(x-1\right)\left(y-1\right)\left(x+y-2\right)=6\\x^2+y^2-2x-2y=3\end{matrix}\right.\)
Giải hệ pt và pt sau:
a.\(\left\{{}\begin{matrix}\left(2x-3\right)\cdot\left(2y+4\right)=4x\cdot\left(y-3\right)+54\\\left(x+1\right)\cdot\left(3y-3\right)=3y\left(x+1\right)-12\end{matrix}\right.\)
b.\(\left\{{}\begin{matrix}x+y-1=0\\x^2+xy+3=0\end{matrix}\right.\)
c.\(\left\{{}\begin{matrix}2x-3y=5\\x^2-y^2=40\end{matrix}\right.\)
d.\(\left\{{}\begin{matrix}3x+2y=36\\\left(x-2\right)\left(y-3\right)=18\end{matrix}\right.\)
e.\(\left\{{}\begin{matrix}2x+y=5m-1\\x-2y=2\end{matrix}\right.\) . Tìm m để hệ có nghiệm (x;y) t/m x\(^2\)-2y\(^2\)=1
f. \(\frac{t^2}{t-1}+t=\frac{2t^2+5t}{t+1}\)
g.\(\frac{x^2+2x-3}{x^2-9}+\frac{2x^2-2}{x^2-3x+2}=8\)
Giải các hệ phương trình sau:
1) \(\left\{{}\begin{matrix}3y^2+1+2y\left(x+1\right)=4y\sqrt{x^2+2y+1}\left(1\right)\\y\left(y-x\right)=3-3y\left(2\right)\end{matrix}\right.\)
Hd: Biến đổi pt (1) về dạng \(A^2-B^2=0\)
2)\(\left\{{}\begin{matrix}2x+\left(3-2xy\right)y^2=3\left(1\right)\\2x^2-x^3y=2x^2y^2-7xy+6\left(2\right)\end{matrix}\right.\)
Hd: Biến đổi pt (1) về \(2x\left(1-y^3\right)=3\left(1-y^2\right)\)
3)\(\left\{{}\begin{matrix}x^4+2xy+6y-\left(7+2y\right)x^2=-9\left(1\right)\\2yx^2-x^3=10\left(2\right)\end{matrix}\right.\)
Hd:Biến đổi pt (1) có nhân tử chung là \(x^2-x-3\)
Số nghiệm của hệ phương trình \(\left\{{}\begin{matrix}\left(2x-\left|y\right|-1\right)\left(x+2y-1\right)=0\\\left(2x-\left|y\right|-2\right)\left(x+2y-3\right)=0\end{matrix}\right.\)
giải hệ pt:\(\left\{{}\begin{matrix}x^2-2y+x=5\\y\left(y+x+1\right)=72\end{matrix}\right.\)
1. \(\left\{{}\begin{matrix}x^2+y^2+x+y=4\\x\left(x+y+1\right)+y\left(y-1\right)=2\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}xy+x+y=x^2-2y^2\\x\sqrt{2y}-3\sqrt{x-1}=2x-2y\end{matrix}\right.\)
3. Tìm m để pt có nghiệm x1, x2 thoả mãn \(x_1=x^2_2\):
\(x^2+\left(2m+8\right)x+8m^3=0\)