Bài 11. Cho biểu thức M = \(\dfrac{3\sqrt{x}+1}{\sqrt{x}+3}\) với 𝑥 ≥ 0; 𝑥 ≠ 9. Tìm số thực x để M là số nguyên
Bài 12. Cho biểu thức N = \(\dfrac{\sqrt{x}+3}{\sqrt{x}+5}\) với 𝑥 ≥ 0; 𝑥 ≠ 25. Chứng minh rằng không tồn tại giá trị của x để N là số nguyên.
Cho n = \(\sqrt{3+\sqrt{5+2\sqrt{3}}}+\sqrt{3-\sqrt{5+2\sqrt{3}}}\)
CMR n2 - 2n -2 = 0
Cho biểu thức :
S=(\(\frac{x-2\sqrt{x}}{x-4}-1\)) : \(\left(\frac{4-x}{x-\sqrt{x}-6}-\frac{\sqrt{x}-2}{3-\sqrt{x}}-\frac{\sqrt{x}-3}{\sqrt{x}+2}\right)\)
a. Rút gọn biểu thức S
b. Tìm x để S=1
c. Tìm x để S < 0
d. TÌm x nguyên để biểu thức S có gá trị nguyên
Cho x,y,z > 0 tm : \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\sqrt{3}\) . Tính giá trị nhỏ nhất của bt
\(P=\dfrac{\sqrt{2x^2+y^2}}{xy}+\dfrac{\sqrt{2y^2+z^2}}{yz}+\dfrac{\sqrt{2z^2+x^2}}{xz}\)
2 , gpt
\(\dfrac{2+\sqrt{x}}{\sqrt{2}+\sqrt{2+\sqrt{x}}}+\dfrac{2-\sqrt{x}}{\sqrt{2}-\sqrt{2-\sqrt{x}}}=\sqrt{2}\)
3, tìm stn n để \(A=n^{2012}+n^{2002}+1\) là số nguyên tố
cho biểu thức P=\(\left(1-\frac{\sqrt{x}}{1+\sqrt{x}}\right):\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\) với x≥0, x≠4, x≠9
1, rút gọn P. tính giá trị của P khi x=\(\sqrt{4+2\sqrt{3}}+\sqrt{7-4\sqrt{3}}\)
2, tìm tất cả các giá trị nguyên của x để P<0
3, tìm các giá trị nguyên của x để P có giá trị là số nguyên
4, tìm GTNN của P
Tìm tất cả các số nguyên dương n sao cho:
\(S=\sqrt[3]{2+\sqrt{n}}+\sqrt[3]{2-\sqrt{n}}\) là số nguyên
Tìm số tự nhiên n nhỏ nhất sao cho:
\(\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{n}+\sqrt{n+1}}\ge2014\)
Cho A=(\(\left(\dfrac{2-\sqrt[3]{4x}}{x-\sqrt[3]{2x^2}}\right):\left(\sqrt[3]{2}+\sqrt[3]{x}\right)-\dfrac{1}{\sqrt[3]{x}}\) với x≠0;-2. Tìm x nguyên sao cho A3 nguyên
1. với \(a=\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}};b=\sqrt[3]{17+12\sqrt{2}}+\sqrt[3]{17+12\sqrt{2}}\) tính giá trị biểu thức \(A=a^3+b^3-3\left(a+b\right)\)
2. Giải hệ \(\left\{{}\begin{matrix}2y^2-x^2=1\\2\left(x^3-y\right)=y^3-x\end{matrix}\right.\)
3. cho hai số thức m, n khác 0 thỏa mãn \(\frac{1}{m}+\frac{1}{n}=\frac{1}{2}\). crm: \(\left(x^2+mx+n\right)\left(x^2+nx+m\right)=0\) luôn có nghiệm
4. cho a, b, c là độ dài ba cạnh của một tam giác. Cm: \(\sqrt{\frac{a}{2b+2c-a}}+\sqrt{\frac{b}{2a+2c-b}}+\sqrt{\frac{c}{2a+2b-c}}\ge\sqrt{3}\)