Ta có : \(A=\dfrac{2n+7}{n-2}\) \(=\dfrac{2n-4+11}{n-2}\) \(=\dfrac{2n-4}{n-2}\) \(+\dfrac{11}{n-2}\)
\(=\dfrac{2\left(n-2\right)}{n-2}+\dfrac{11}{n-2}\)\(=2+\dfrac{11}{n-2}\)
Vậy để A nguyên thì \(n-2\inƯ\left(11\right)\)\(=\left\{-11;-11;1;11\right\}\)
* \(n-2=-11\Rightarrow n=-11+2=-9\)
* \(n-2=-1\Rightarrow n=-1+2=1\)
* \(n-2=1\Rightarrow n=1+2=3\)
* \(n-2=11\Rightarrow n=11+2=13\)
Vì \(n\in N\) \(\Rightarrow\) \(n=\left\{1;3;13\right\}\)
Vậy để A là số nguyên thì \(n=\left\{1;3;13\right\}\)