Đặt \(A=2.2^2+3.2^3+4.2^4+...+n.2^n\)
\(\Rightarrow2A=2\left(2.2^2+3.2^3+...+n.2^n\right)\)
\(=2.2^3+3.2^4+4.2^5+...+n.2^{n+1}\)
\(\Rightarrow2A-A=\left(2.2^3+3.2^4+...+n.2^{n+1}\right)-\left(2.2^2+3.2^3+...+n.2^n\right)\)
\(\Rightarrow A=n.2^{n+1}-2^3-\) \(\left(2^3+2^4+...+2^{n-1}+2^n\right)\)
Đặt \(B=2^3+2^4+2^5+...+2^{n-1}+2^n\)
Ta tính được \(B=2B-B=2^{n-1}-2^3\)
\(\Rightarrow A=n.2^{n+1}-2^3-2^{n-1}+2^3\) \(=\left(n-1\right).2^{n+1}\)
Mà \(A=2^{n+11}\) \(\Rightarrow\left(n-1\right).2^{n+1}=2^{n+11}\)
\(\Rightarrow n-1=2^{10}\Rightarrow n=2^{10}+1=1025\)
Vậy \(n=1025\)