\(\frac{n^2+1}{n+1}=\frac{n\left(n+1\right)-n+1}{n+1}=\frac{n\left(n+1\right)}{n+1}-\frac{n+1}{n+1}=n-\frac{n+1}{n+1}\in Z\)
=>n+1 chia hết n+1
Ta thấy 2 vế đều có n+1
=>Với mọi n thuộc Z đều tm
Ta có : \(\frac{n^2+1}{n+1}=\frac{\left(n^2+2n+1\right)-2\left(n+1\right)+2}{n+1}\)
\(=\frac{\left(n+1\right)^2-2\left(n+1\right)+2}{n+1}=\left(n+1\right)-2+\frac{2}{n+1}\)
Để \(\left(n^2+1\right)⋮\left(n+1\right)\) thì \(n+1\inƯ\left(2\right)\)
Bạn tự liệt kê :)