Câu 1: Tìm tập xác định của hàm số y=\(\dfrac{cosx-2}{1-2sinx}\)
Câu2 : Tìm m để hàm số y=\(\sqrt{m-1+2cosx}\) xác đinh trên R
câu3 : Tìm số điểm biểu diễn nghiệm của pt: 2cos5x+1
giúp e với mn ơi
1) (sin\(\dfrac{x}{2}\) - cos\(\dfrac{x}{2}\))2 + \(\sqrt{3}\)cosx = 2sin5x +1
2) 2sinx(\(\sqrt{3} \)cosx + sinx + 2sin3x)=1
3) (1 + 2cosx)(cosx - \(\sqrt{3}\)sinx) =1
1) 2sinx + cosx = sin2x + 1
2) (1 + cosx)(1+sinx) = 2
3) 3cos4x - 8cos6x + 2cos2x +3 =0
4) sin3x + cos3x.sinx + cosx = \(\sqrt{2}\)cos2x
5) (2cosx -1)(2sinx + cosx) = sin2x - sinx
Giai phương trình bậc nhất :
a/ \(2sinx+\sqrt{3}=0\)
b/ \(2cosx-\sqrt{3}=0\)
c/ \(2cosx-\sqrt{2}=0\)
d/ \(tanx+\sqrt{3}=0\)
Tìm GTLN và GTNN của hàm số : 1. y = sinx + 2cosx +1 / 2sinx + cosx + 3
2.y= 2sin^2sinx - 3 sinx cosx + cos^2 x
Giải phương trình : 1. 2sin^2 * 2x + sin7x -1 = sinx
2.cos 4x + 12 sin^2 x -1 = 0
Giải các phương trình sau:
a,\(\dfrac{sin2x+cosx-\sqrt{3}\left(cos2x+sinx\right)}{2sin2x-\sqrt{3}}\)
=1
b,
(2cosx-1)cotx=\(\dfrac{3}{sinx}+\dfrac{2sinx}{cosx-1}\)
tìm tập xác định của hàm số sau đây:
a)\(y=sin^{x-1}_{x+2}\)
b)\(y=\sqrt{3-2cosx}\)
c)\(y=\sqrt{\dfrac{1+cosx}{1-cosx}}\)
TÌM MAX, MIN:
a. y=2sinx-cos\(^2\)x
b. y=5+\(\sqrt{3-2sinx}\)
1> 1 + sinx + cosx + sin2x + cos2x = 0
2> cos2x + 3sin2x + 5 sinx - 3cosx = 3
3> \(\dfrac{\sqrt{2}*(cosx - sinx)}{cotx - 1}\) = \(\dfrac{1}{tanx + cot2x}\)
4> (2cosx - 1)*(2sinx + cosx) = sin2x - sinx