\(A=\dfrac{x-1+4}{\sqrt{x}+1}=\sqrt{x}-1+\dfrac{4}{\sqrt{x}+1}\)
\(=\sqrt{x}+1+\dfrac{4}{\sqrt{x}+1}-2\ge2\cdot\sqrt{4}-2=2\)
Dấu '=' xảy ra khi \(\left(\sqrt{x}+1\right)^2=4\)
=>x=1
\(A=\dfrac{x-1+4}{\sqrt{x}+1}=\sqrt{x}-1+\dfrac{4}{\sqrt{x}+1}\)
\(=\sqrt{x}+1+\dfrac{4}{\sqrt{x}+1}-2\ge2\cdot\sqrt{4}-2=2\)
Dấu '=' xảy ra khi \(\left(\sqrt{x}+1\right)^2=4\)
=>x=1
Vẽ đồ thị hàm số:
a) y=\(\dfrac{1}{3}x^2\)
b) y=\(\dfrac{2}{3}x^2\)
c) y=\(\dfrac{2}{3}x^2\)
Mik cần gấp
Bài 13: Cho (P): \(y=\dfrac{x^2}{4}\) và đường thẳng (d): \(y=\dfrac{-x}{2}+2\)
1. Vẽ (P) và (d)
2. Tìm toạ độ giao điểm của (P) và (d)
3. Tìm toạ độ của điểm thuộc (P) sao cho tại đó đường tiếp tuyến của (P) song song với (d)
Tim min: (√x-1):(√x+1)
Tìm 1 pt bậc 2 có 2 no là:\(\dfrac{\sqrt{3\:}+\sqrt{2}}{6}\)và \(\dfrac{\sqrt{3}-\sqrt{2}}{6}\)
Cho hàm số y=\(x^2\) và y=x+m (m là tham số)
1)Tìm m để đồ thị hai hàm số cắt nhau tại 2 điểm phân biệt A, B.
2)Tìm m để AB=3\(\sqrt{2}\)
Bài 12: Cho (P): \(y=\dfrac{x^2}{4}\)và đường thẳng (d) đi qua điểm I \(\left(\dfrac{3}{2};1\right)\) có hệ số góc là m
1. Vẽ (P) và viết Phương trình (d)
2. Tìm m sao cho (d) tiếp xúc (P)
3. Tìm m sao cho (d) và (P) có hai điểm chung phân biệt
Cho parabol (P): y= (m-1)\(x^2\) và đường thẳng (d):y=2x-1
Tìm m để (P) đi qua điểm A(\(-\sqrt{3}\);-3).Vẽ P với m tìm được trên hệ trục toạn độ Oxy
Cho hai hàm số \(y=\dfrac{1}{3}x^2\) và \(y=-x+6.\)
a) Vẽ đồ thị của các hàm số này trên cùng một mặt phẳng tọa độ.
b) Tìm tọa độ các giao điểm của hai đồ thị đó.
Cho hai hàm số: \(y=\dfrac{3}{2}x^2;y=-\dfrac{3}{2}x^2.\) Điền vào những ô trống của các bảng sau rồi vẽ hai đồ thị trên cùng một mặt phẳng tọa độ.
x | -2 | -1 | 0 | 1 | 2 |
\(y=\dfrac{3}{2}x^2\) |
x | -2 | -1 | 0 | 1 | 2 |
\(y=-\dfrac{3}{2}x^2\) |
Nhận xét về tính đối xứng của hai đồ thị đối với trục Ox.