Đặt \(\sqrt{x}=a\Rightarrow a>0;a\ne1\)
\(Q=\frac{1}{a^2}+\frac{3a-3}{a}=\frac{1}{a^2}+3-\frac{3}{a}=\frac{1}{a^2}-2.\frac{1}{a}.\frac{3}{2}+\frac{9}{4}+\frac{3}{4}=\left(\frac{1}{a}-\frac{3}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
\(\Rightarrow Q_{min}=\frac{3}{4}\) khi \(\frac{1}{a}=\frac{3}{2}\Rightarrow a=\frac{2}{3}\Rightarrow x=\frac{4}{9}\)