Cho hệ phương trình \(\begin{cases} (m+1)x+2y=m-1\\ m^2x-y=m^2+2m \end{cases} \)
Tìm m nguyên để hệ có nghiệm duy nhất là nghiệm nguyên
Cho hệ phương trình:
\(\begin{cases} x+my=2\\ mx- 3my=3m+3 \end{cases} \)
Xác định giá trị của m để hệ có nghiệm x,y thỏa mãn y = 8\(x^2\)
Cho hệ phương trình \(\begin{cases} ax-y=2\\ x+ay=3 \end{cases} \). Tìm a để hệ phương trình có nghiệm duy nhất và tìm nghiệm đó
Cho hệ phương trình: \(\left\{{}\begin{matrix}mx+4y=10-m\\x+my=4\end{matrix}\right.\)
a) Xác định các giá trị nguyên m để hệ có nghiệm duy nhất (x ; y) sao cho x > 0, y > 0.
b) Tìm giá trị nguyên m để hệ có nghiệm (x ; y) với x ; y là số nguyên dương.
Giải hệ phương trình: \(\left\{{}\begin{matrix}mx+4y=10-m\\x+my=4\end{matrix}\right.\)
a) Xác định các giá trị nguyên m để hệ có nghiệm duy nhất (x ; y) sao cho x > 0, y > 0.
b) Tìm giá trị nguyên m để hệ có nghiệm (x ; y) với x ; y là số nguyên dương.
Cho hệ phương trình:\(\hept{\begin{cases}\left(m+1\right)x+my=2m-1\\mx-y=m^2-2\end{cases}}\)
Tìm m để hệ phương trình có 1 nghiệm duy nhấ (x,y) thỏa mãn P=xy đạt GTLN
1
a) Giải hệ phương trình:
\(\begin{cases}\dfrac{x}{3}+\dfrac{y-4}{2}=\dfrac{y+2}{6}\\\dfrac{x-1}{2}=\dfrac{y-1}{3}\end{cases}\)
b) Với giá trị nào của m thì hệ phương trình:
\(\begin{cases}2x+y=1\\x-my=5\end{cases}\)
Có nghiệm duy nhất ? Vô nghiệm ?
Cho hệ phương trình (m là tham số) \(\left\{{}\begin{matrix}x-y=1\\mx+y=m\end{matrix}\right.\) tìm giá trị của m để hệ phương trình có nghiệm duy nhất
Cho hệ phương trình : \(\left\{{}\begin{matrix}mx+y=2m\\x+my=m+1\end{matrix}\right.\)
Tìm các giá trị nguyên của m để hệ phương trình có nghiệm (x;y) với x,y là những số nguyên