Tìm m để phương trình \(mx^2+2\left(m-1\right)x+m-5=0\)có 2 nghiệm thoả mãn: \(x_1< x_2< 2\)
GIÚP MÌNH VỚI MÌNH ĐANG CẦN GẤP
Giúp mình giải chi tiết về bài này với !
Chứng minh phương trình : \(mx^2-2\left(m+1\right)x+m+2=0\) luôn có nghiệm với mọi m.
Cho phương trình \(x^2-mx+2=0\) tìm m để phương trình có 2 nghiệm phân biệt để biểu thức \(\left(x_1+x_2\right)^4-17\left(x_1+x_2\right)^2x_1^2x_2^2-6\left(x_1+x_2\right)x_1^3x_2^3\)đạt giá trị nhỏ nhất
Tìm m để hệ phương trình sau có nghiệm
\(\left\{{}\begin{matrix}-x^2+2x+3\ge0\\mx-3\le x+1\end{matrix}\right.\)
Tìm m để phương trình: \(mx^2-2\left(m+1\right)x+m+5=0\) có 2 nghiệm x1,x2 thỏa mãn x1<0<x2<2
Bài 1: Tìm m để \(f\left(x\right)=mx^2-2\left(m-1\right)x+4m\) luôn luôn âm.
Bài 2: Tìm tất cả các giá trị của tham số m để bất phương trình \(\dfrac{-x^2+2x-5}{x^2-mx+1}\le0\)nghiệm đúng với mọi \(x\in R\)
Bài 3: Cho hàm số \(f\left(x\right)=-x^2-2\left(m-1\right)x+2m-1\). Tìm tất cả các giá trị của tham số m để \(f\left(x\right)>0,\forall x\in\left(0;1\right)\)
Tất cả các giá trị của tham số m để phương trình \(mx^4-2\left(m-1\right)x^2+\left(m-1\right)m=0\) có một nghiệm là
Tìm m để phương trình: \(\left(m+1\right)x^2-2\left(m-1\right)x+m-2=0\) có 2 nghiệm thoả mãn \(\dfrac{x_2}{x_1}+\dfrac{x_1}{x_2}=-4\) .
GIÚP MÌNH VỚI MÌNH ĐANG CẦN GẤP
tìm m để các phương trình sau có nghiệm duy nhất
1, \(mx^2+6=4x+3m\)
2,\(mx^2-2\left(m+1\right)x+m+1=0\)
3, \(2\left(x^2-1\right)=x\left(mx+1\right)\)