- Với \(m=2\) pt có nghiệm
- Với \(m\ne2\) để pt có nghiệm
\(\Rightarrow\Delta'=\left(2m-3\right)^2-\left(m-2\right)\left(5m-6\right)\ge0\)
\(\Leftrightarrow-m^2+4m-3\ge0\Rightarrow1\le m\le3\)
Vậy \(1\le m\le3\)
- Với \(m=2\) pt có nghiệm
- Với \(m\ne2\) để pt có nghiệm
\(\Rightarrow\Delta'=\left(2m-3\right)^2-\left(m-2\right)\left(5m-6\right)\ge0\)
\(\Leftrightarrow-m^2+4m-3\ge0\Rightarrow1\le m\le3\)
Vậy \(1\le m\le3\)
Tìm các giá trị của tham số m để các phương trình sau vô nghiệm
a. \(\left(m-2\right)x^2+2\left(2m-3\right)x+5m-6=0\)
b. \(\left(3-m\right)x^2+2\left(m+3\right)x+m+2=0\)
Tìm m để các phương trình sau có hai nghiệm dương phân biệt :
a) \(\left(m^2+m+1\right)x^2+\left(2m-3\right)x+m-5=0\)
b) \(x^2-6mx+2-2m+9m^2=0\)
Tìm m để phương trình có 4 nghiệm:
\(x^4-6x^3+5x^2+\left(2m+12\right)x-m^2-3m=0\)
Tìm các giá trị của tham số m để các phương trình sau có 2 nghiệm phân biệt trái dấu :
a) \(\left(m^2-1\right)x^2+\left(m+3\right)x+\left(m^2+m\right)=0\)
b) \(x^2-\left(m^3+m-2\right)x+m^2+m-5=0\)
Tìm các giá trị của tham số m để các phương trình sau có hai nghiệm dương phân biệt :
a) \(x^2-2x+m^2+m+3=0\)
b) \(\left(m^2+m+3\right)x^2+\left(4m^2+m+2\right)x+m=0\)
tìm m để phương trình \(\sqrt{2x^2+2\left(m+1\right)x-m^2-1}=x-m\) có nghiệm
Tìm m để bất phương trình sau nghiệm đúng với mọi x
a)\(\dfrac{x^2-8x+20}{mx^2+2\left(m+1\right)x +9m+4}< 0\)
b)\(\dfrac{3x^2-5x+4}{\left(m-4\right)x^2+\left(1+m\right)x+2m-1}\)<0
Tìm m để các phương trình sau có nghiệm
a) \(\left(m-1\right)x^2-2\left(m+3\right)x-m+2\) = 0
b) \(\left(m-1\right)x^2+2\left(m-3\right)x+m+3=0\)
Giải các bất phương trình, hệ bất phương trình (ẩn m) sau :
a) \(\left\{{}\begin{matrix}\left(2m-1\right)^2-4\left(m^2-m\right)\ge0\\\dfrac{1}{m^2-m}>0\\\dfrac{2m-1}{m^2-m}>0\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\left(m-2\right)^2-\left(m+3\right)\left(m-1\right)\ge0\\\dfrac{m-2}{m+3}< 0\\\dfrac{m-1}{m+3}>0\end{matrix}\right.\)