Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
dam thu a

tìm m để phương trình \(\left(x^2-1\right)\left(x+3\right)\left(x+5\right)=m\) có 4 nghiệm phân biệt \(x_1,x_2,x_3,x_4\) thỏa mãn \(\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}+\frac{1}{x_4}=-1\)

Vũ Huy Hoàng
25 tháng 3 2020 lúc 21:20

Phương trình tương đương:

\(\left(x^2+4x+3\right)\left(x^2+4x-5\right)=m\)

\(\Leftrightarrow\left(a+3\right)\left(a-5\right)-m=0\)

\(\Leftrightarrow a^2-2a-15-m=0\) (1) với \(a=x^2+4x\)

Để phương trình ẩn x có 4 nghiệm phân biệt thì điều kiện cần của phương trình ẩn a là phải có 2 nghiệm phân biệt.

\(\Delta'_{\left(1\right)}=1+15+m=16+m>0\) \(\Rightarrow m>-16\)

\(\Leftrightarrow\left[{}\begin{matrix}a=2+\sqrt{16+m}\\a=2-\sqrt{16+m}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2+4x-2-\sqrt{16+m}=0\left(2\right)\\x^2+4x-2+\sqrt{16+m}=0\left(3\right)\end{matrix}\right.\)

Dễ thấy (2) luôn có 2 nghiệm phân biệt với mọi m, (3) có 2 nghiệm phân biệt khi \(m< 0\). (Xét denta)

Nghiệm của chúng lần lượt là:

\(\left[{}\begin{matrix}x=2+\sqrt{4+\sqrt{16+m}}\\x=2-\sqrt{4+\sqrt{16+m}}\\x=2+\sqrt{4-\sqrt{16+m}}\\x=2-\sqrt{4-\sqrt{16+m}}\end{matrix}\right.\). 4 nghiệm này luôn phân biệt với \(-16< m< 0\)

Lần lượt thay nghiệm vào điều kiện:

\(\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}+\frac{1}{x_4}=-1\)

Ta được phương trình vô nghiệm. Vậy không tìm nổi m :V

Khách vãng lai đã xóa

Các câu hỏi tương tự
dam thu a
Xem chi tiết
Nguyễn Huy Đạt
Xem chi tiết
Phạm Minh Quang
Xem chi tiết
𝓓𝓾𝔂 𝓐𝓷𝓱
Xem chi tiết
Hoàng Vy Oanh
Xem chi tiết
Phạm Minh Quang
Xem chi tiết
Big City Boy
Xem chi tiết
Nguyễn Thế Hiếu
Xem chi tiết
ngọc linh
Xem chi tiết